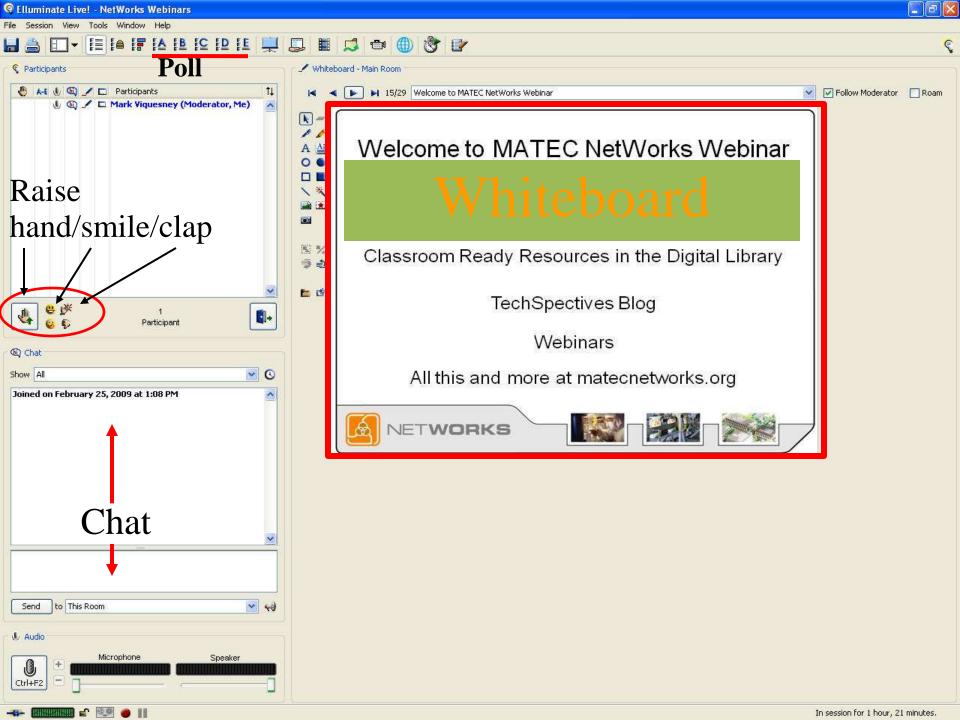
Carbon Capture and Storage (CCS) and Potential CO₂ Solutions


HTWI is a part of
Center for Workforce Development
a member of the
Division of Academic and Student Affairs at the
Maricopa Community Colleges.

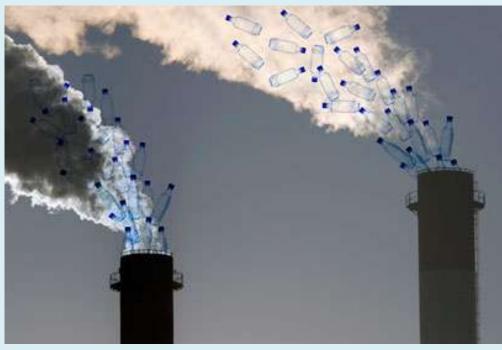
Funded, in part, by a grant from the National Science Foundation.

DUE-1003542

Chat Box

In the Chat Box, please type the name of your school or organization, your location, and how many people are attending with you today.

Participant's Box



Let the presenter know if you like what they say with a smile or clap. Raise a hand if you have a question – and then type it into the chat box.

HTWI Webinar Presenters

www.globe-net.com/media/261542/co2from_stack.jpg

www.rsc.org/.../co2-chimney-410_tcm18-187444.jpg

Brad Bates Chemistry Faculty Chandler Gilbert Community College – Williams Campus 7360 E. Tahoe Avenue Mesa, AZ 85212 (480) 988-8996 brad.bates@cgcmail.maricopa.edu

www.globe-net.com/media/261542/co2from_stack.jpg

Carbon Capture and Storage with Potential CO₂ Solutions

Brad Bates

Chemistry Faculty Chandler-Gilbert Community College

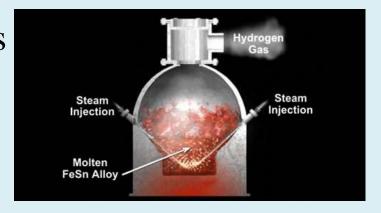
January 21, 2011

www.rsc.org/.../co2-chimney-410_tcm18-187444.jpg

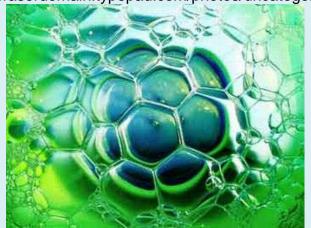
Agenda

- Introduction
- Electrical Power Consumption & CO₂
- Making Electricity and Capturing CO₂
- Managing CO₂
 - CO₂ as a commodity
 - Carbon Sequestration
 - Recycling CO₂ into commercial products

HTWI & Diversified Energy


www.blogcdn.com/.../01/diversified-energy.png

- Diversified Energy Corporation is a privately held company specializing in promising alternative and renewable energy technologies.
- HTWI High Tech Workforce Initiative is led by the Center for Workforce Development in MCCCD and is funded by the National Science Foundation.


Diversified Energy Projects

Advanced gasification techniques with feedstock flexibility targeted for industrial syngas applications and liquid fuels production.

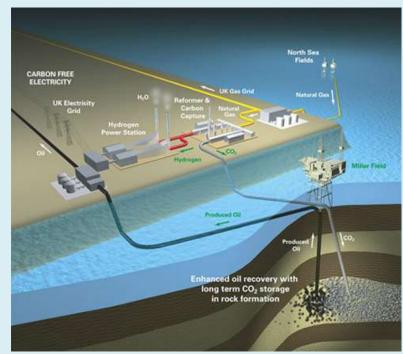
thefraserdomain.typepad.com/photos/uncategori...

Algal biomass cultivation system that is scalable and economical for fuel production.

www.instablogsimages.com/.../algaejpg_5638.jpg

Diversified Energy Work

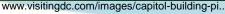
Study Parasitic load of carbon capture in post-combustion, pre-combustion and oxy-fuel combustion power plants power plants.



sitemaker.umich.edu/.../files/picture1.jpg

Diversified Energy Work

Determine the potential business opportunities in carbon sequestration for Diversified Energy.


earth2tech.files.wordpress.com/2008/01/csc1.jpg

Diversified Energy Work

Briefed company on HR 2454 "The American Clean Energy and Security Act of 2009" as the bill worked its way through the Congress.

www.brightstarsolar.net/wp-content/uploads/20..

How much energy does a student use in a day, month or year?

- How much energy does a student use in a day, month or year?
- How is electricity made from coal?

- How much energy does a student use in a day, month or year?
- How is electricity made from coal?
- How is CO₂ captured in this process?

- How much energy does a student use in a day, month or year?
- How is electricity made from coal?
- How is CO₂ captured in this process?
- What is carbon sequestration?

- How much energy does a student use in a day, month or year?
- How is electricity made from coal?
- How is CO₂ captured in this process?
- What is carbon sequestration?
- How can carbon be reused or recycled?

Waste to Energy – Potential Solutions

Municipal Solid Waste

Cellulosic Biomass

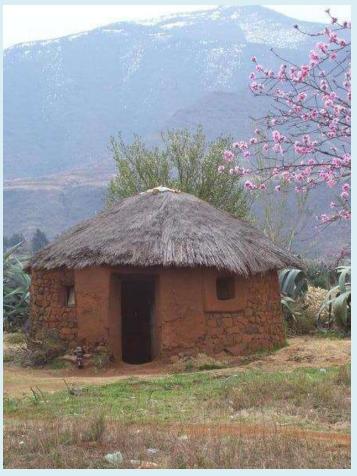
Animal and Crop Wastes

Industrial Wastes

Student Comments

blog.mapawatt.com/.../2009/11/Al_gore_earth.jpg

"I get the whole global warming / climate change thing, you got my attention, but what now?"

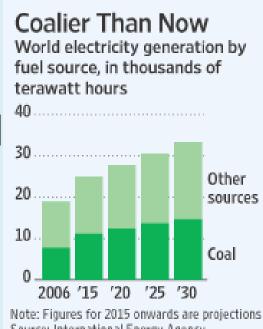


Student Comments

www.hainaultforest.co.uk/CharcoalBurnHut6.JPG

"There must be something I can do about climate change without having to live in a grass hut."

photos.travelblog.org/Photos/18100/89745/f/56...

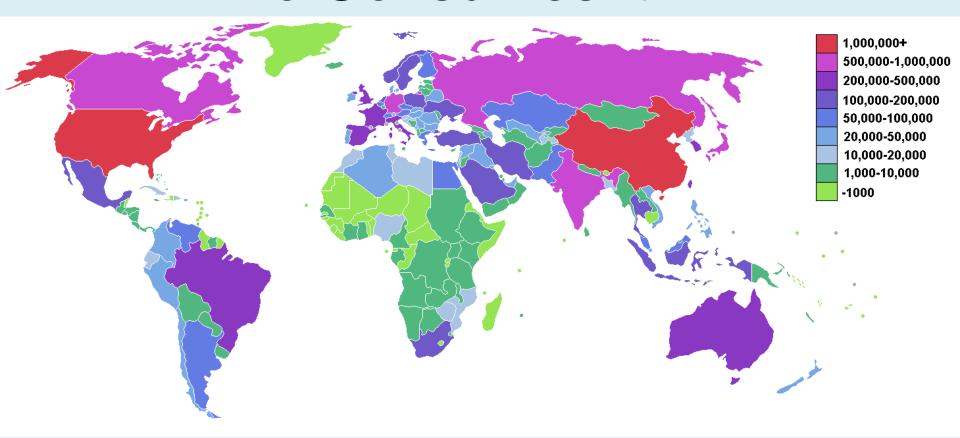


What's the Basic Problem?

 World Economy Consumed 16.8 terawatts of electricity in 2006

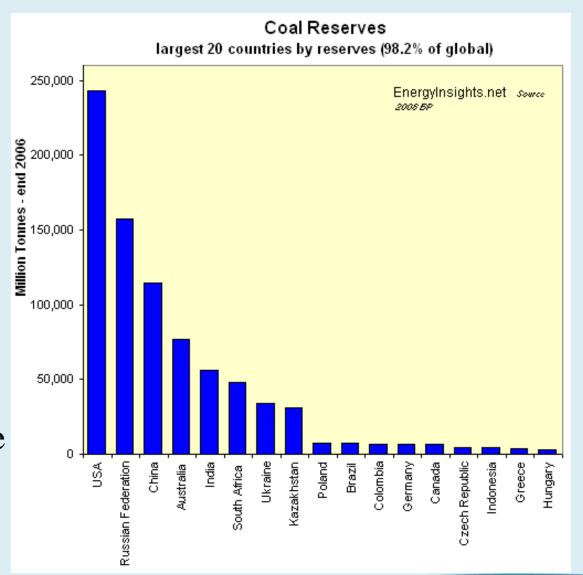
Required 6.7 billion tons of coal

Burning coal releases CO₂

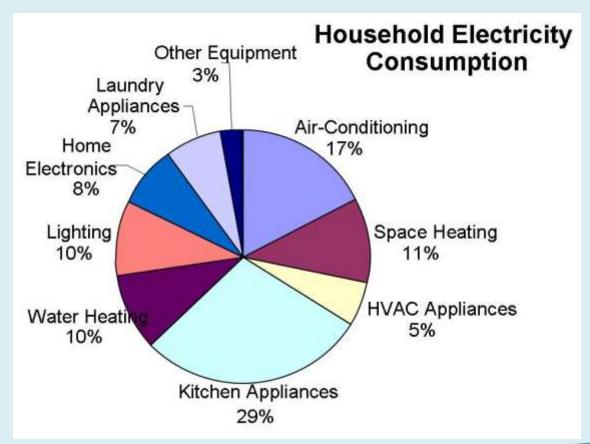


Source: International Energy Agency

sg.wsj.net/public/resources/images/NA-AW591_C



Who Consumes It?


- Recoverable coal reserves in the world:
 - 1) United States
 - 2) Russia
 - 3) China
 - 4) Australia
 - 5) India
 - 6) South Africa
- Each country has the resources to meet electrical needs for many years.

www.energyinsights.net/cgi-script/csArticles/

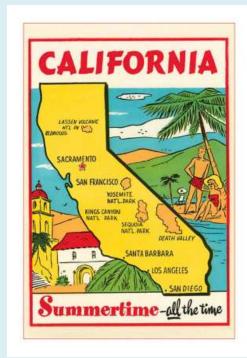
What About U. S. Household Consumption?

Household electricity use in the U.S. Copyright © data from US DOE EIA 2009

What About Household Consumption?

Type of Housing	Kilowatt-hours per year
Single Family Home	7,105
Townhome	4,469
2 – 4 Unit Apartment	3,877
5+ Unit Apartment	3,807
Mobile Home	5,662

California Statewide Residential Appliance Saturation Study, Volume 2, June 2004


www.kennycarroll.com/1920Pine-mls.jpg

What About Household Consumption?

- 6,000 kWh per year average in 2004
- kWh per square foot per month
- Laguna Beach = 0.23 kWh/ft²/month

1500 sq. ft home = 4140 kWh per year

fmgpath.com/wp-content/uploads/2009/05/ca-008

Individual Consumption – Video Games

www.sciencedaily.com/.../071024145626-large.jpg

blog.tmcnet.com/blog/tom-keating/images/pong.jpg

Individual Consumption – Video Games

- National Resource Defense Council (NRDC) study on energy use of video game consoles.
- 16 billion kilowatt hours per year
- Annual electricity use for City of San Diego

www.zeldauniverse.net/.../characters/mario.png

Electrical Power Research Institute (EPRI) Madden NFL 11

Device	Watts / hour
Nintendo Wii	13.7
Sony Playstation 3	84.8
Microsoft Xbox 360	87.9

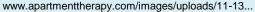
What's Your Individual Consumption?

- Determining your individual kWh consumption
- http://michaelbluejay.com/electricity/howmuch.html
- Log usage by item and hours per day or week
- Calculate total

accurateappliancerepair.biz/yahoo_site_admin/ . . .

www.globalnerdy.com/.../05/00s-computers.jpg

www.moonbattery.com/flat-screen-TV.jpg


www.helenahomegallery.com/wordpress/wp-conten...

new-cell-phone.org/wp-content/uploads/2010/01...

blog.craftzine.com/wind-up-lamp03.jpg

www.markbeam.com/images/spinelamp.jpg

How much electrical power is required to run a 100 watt light bulb for 24 hours a day for a year?

100 watts x 1 kWh/1000 watts x 24 hr/day x 365 days/yr

876 kWh


sitemaker.umich.edu/.../files/picture1.jpg

www.celsias.com/.../admin/Coal-Pile-797269.jpg

6,150 kWh/ton

sitemaker.umich.edu/.../files/picture1.jpg

www.celsias.com/.../admin/Coal-Pile-797269.jpg

6,150 kWh/ton

 $\approx 40\%$ efficiency

sitemaker.umich.edu/.../files/picture1.jpg

www.celsias.com/.../admin/Coal-Pile-797269.jpg

6,150 kWh/ton

 $\approx 40\%$ efficiency

 $0.40 \times 6,150 \text{ kWh/ton} = 2,460 \text{ kWh/ton}$

sitemaker.umich.edu/.../files/picture1.jpg

www.celsias.com/.../admin/Coal-Pile-797269.jpg

6,150 kWh/ton

 $\approx 40\%$ efficiency

 $0.40 \times 6,150 \text{ kWh/ton} = 2,460 \text{ kWh/ton}$

876 kWh x 2,460 kWh/ton = 0.357 tons

sitemaker.umich.edu/.../files/picture1.jpg

www.celsias.com/.../admin/Coal-Pile-797269.jpg

How much coal would this require?

6,150 kWh/ton

 $\approx 40\%$ efficiency

 $0.40 \times 6,150 \text{ kWh/ton} = 2,460 \text{ kWh/ton}$

876 kWh x 2,460 kWh/ton = 0.357 tons

Approximately 714 pounds

(0.357 tons x 2000 pounds / ton)

What's 714 Pounds of Coal Look Like?

gasprices-usa.com/coal-train330.jpg

- Coal train car
- Approximately 80 tons of coal (160,000 lbs)

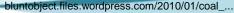
What's 714 Pounds of Coal Look Like?

gasprices-usa.com/coal-train330.jpg

- Basketball Units (BUs)
- 1 basketball = 13.4 lbs coal
- 100 watt lamp = 55 BUs
- 55 basketballs of coal

- Coal train car
- Approximately 80 tons of coal (160,000 lbs)

www.pipersvale.suffolk.sch.uk/.../basketball.jpg


How much CO₂ is produced?

Simplified Coal Combustion Reaction

$$C(s) + O_2(g) \rightarrow CO_2(g) + heat$$

- 12 g C reacts with 32 g O₂ producing 44 g CO₂
- Ratio of $CO_2 / C = 44 \text{ g } CO_2 / 12 \text{ g } C = 3.67 \text{ CO}_2 / C$

How much CO₂ is produced?

www.apartmenttherapy.com/images/uploads/11-13...

- 714 pounds of coal needed
- 2,620 pounds of CO₂ produced
 (714 pounds C x 3.67 CO₂/C)
- Volume CO_2 produced = 23,186 ft³ (20.0 °C, 1 atm, density 0.113 lbs/ft³)

How much CO₂ is produced?

www.apartmenttherapy.com/images/uploads/11-13...

- 714 pounds of coal needed
- 2,620 pounds of CO₂ produced (714 pounds C x 3.67 CO₂/C)
- Volume CO₂ produced = 23,186 ft³
 (20.0 °C, 1 atm, density 0.113 lbs/ft³)
- Basketball Units (BUs)
- 1 basketball = 0.260 ft^3
- $100 \text{ watt lamp} = 23,186 \text{ ft}^3$
- 90,000 basketballs of CO₂

90,000 Basketballs?

ryefly.tripod.com/pictures/usair747nose.jpg

www.wingweb.co.uk/wingweb/img/500-Air_Force O...

• Boeing 747 volume 31,285 ft³

www.petergreenberg.com/wp-content/uploads/200...

United States Per Capita Electricity Use by Sector: 2005 (11)

Section	Electricity use (kWh / person)
Residential	4,586
Commercial	4,302
Industrial	3,438
Total	12,326

- 12,326 kWh = 5 tons coal = 825 basketballs of coal
- $347,790 \text{ ft}^3 \text{ CO}_2 = 1,350,000 \text{ basketballs of CO}_2$
- Fifteen 747 airliners



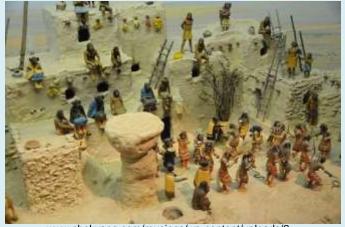
Survey Question #1

How many hours per week do you and /or the members of your household watch TV?

- A. 10 or less hours
- B. 10 to 20 hours
- C. 20 to 30 hours
- D. 30 to 40 hours
- E. 40 hours (or more)

Type them in your chat window

Making Electricity and Capturing CO₂



History of Coal

3000 – 4000 years: Bronze Age

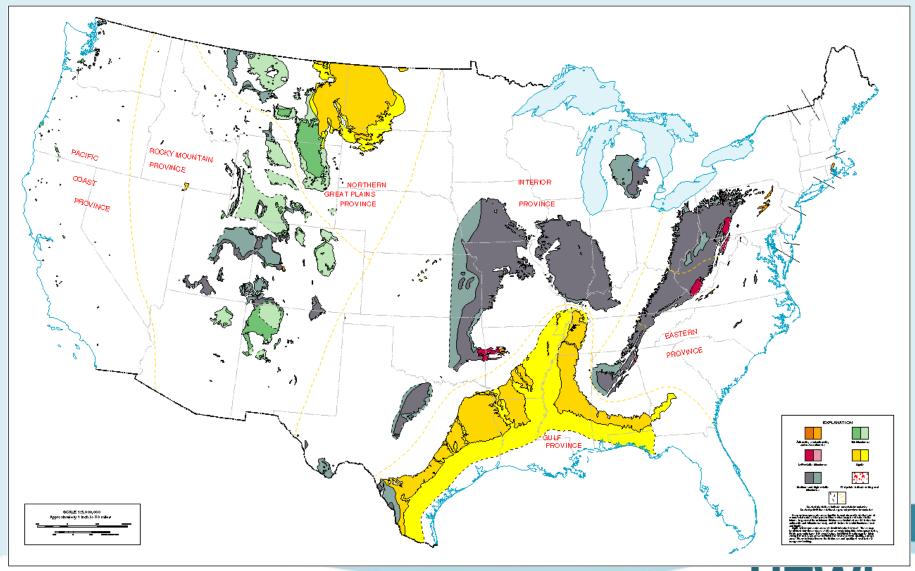
www.jamespreller.com/wp-content/uploads/2009/...

www.chekyang.com/musings/wp-content/uploads/2...

1300's Hopi tribes1306 King Edward I

1700's – Industrial Revolution

leohorowitz.qwriting.org/files/2010/10/indust...

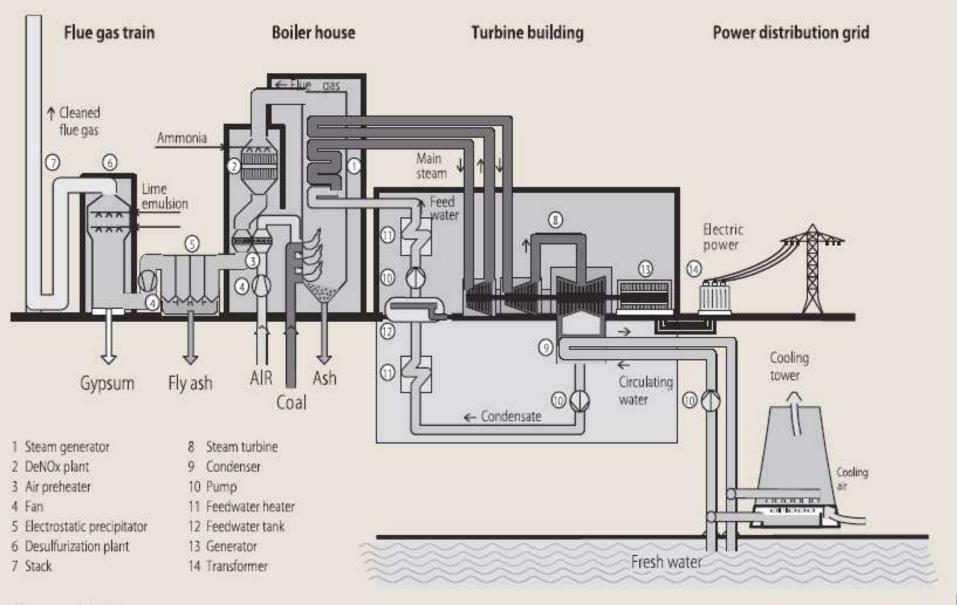

Chemical Changes with Coal Rank

Material	Caron (mass %)	Hydrogen (mass %)	Oxygen (mass %)
Wood (cellulose)	44	6	50
Peat	59	6	35
Lignite Coal	71	5	24
Subbituminous Coal	74	5	21
Bituminous Coal	84	5	11
Anthracite	94	3	3
Graphite (not a coal)	100	0	0

- Plant debris evolves to coal
- Mass percent carbon = higher coal ranking
- Higher coal ranking = higher caloric value
- Bituminous coal most abundant rank

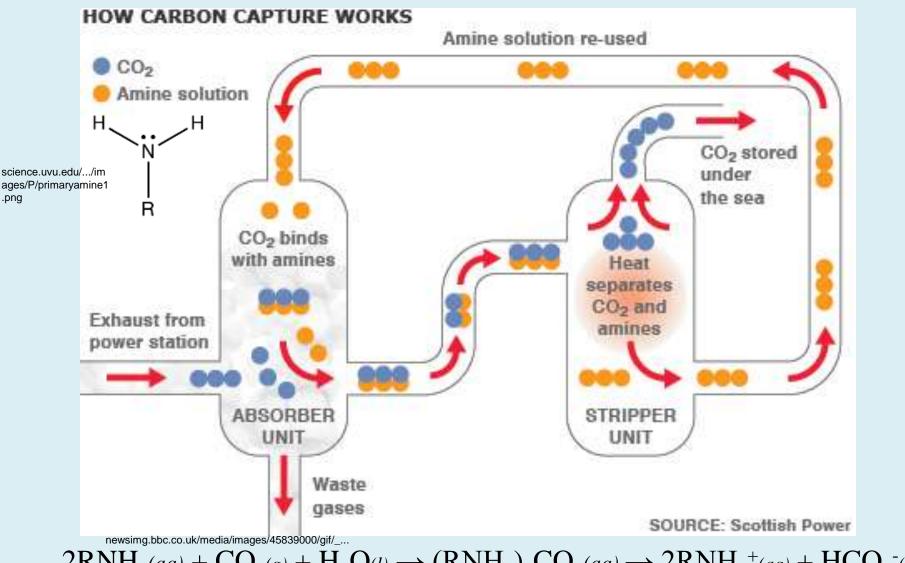
Coal in the United States

Pulverized Coal (PC) Power Plants


- Traditional and most abundant (5,400 plants)
- Older technology
- Efficiency $\approx 34\%$
- Flue gas 15 20% CO₂

Pulverized Coal (PC) Power Plants

- Traditional and most abundant (5,400 plants)
- Older technology
- Efficiency $\approx 34\%$
- Flue gas 15 20% CO₂
- Three main areas:
 - Boiler block = coal is burned to generate steam
 - Generator block = steam turbine generates electricity
 - Flue gas clean up = removes particulates and pollutants

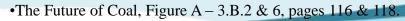

Courtesy ASME.

How Does Power Plant Work?

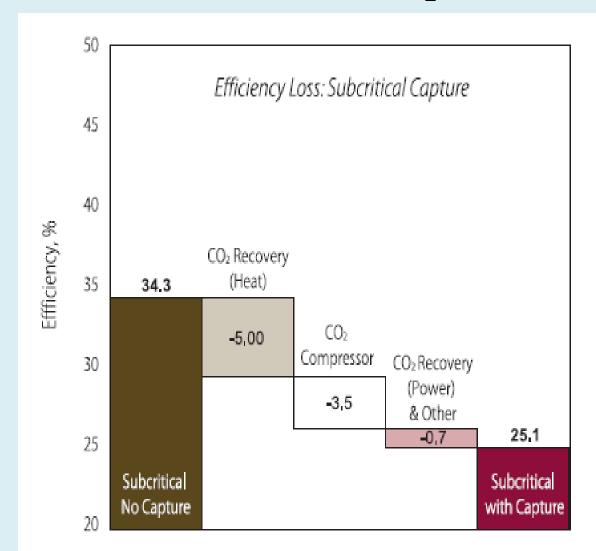
- Video explaining the basics of how a coal fired power plant works.
- How a coal fired power plant works.
- http://www.youtube.com/watch?v=SeXG8K5_UvU&feature=related

 $2RNH_2(aq) + CO_2(g) + H_2O(l) \rightarrow (RNH_3)_2CO_2(aq) \rightarrow 2RNH_3^+(aq) + HCO_3^-(aq)$

Post Combustion (PC) CO₂ Capture & Parasitic Load


Component	Without CO ₂ cap (kg/hr)	With CO ₂ capture (kg/hr)
Coal feed	208,000	284,000
Feed air consumed	2,111,000	2,890,000
CO ₂ emitted to atmosphere	466,000	63,600
SO ₂ emitted to atmosphere	136	1.8
NO _x emitted to atmosphere	114	78.1
Electric power	500 mW	500 MW
CO ₂ capture	None	130 MW
CO ₂ compression	None	70 MW
Cost of Electricity	4.64¢ per kWh	8.24¢ per kWh

iongenericarticle.do?categoryId=9023211&contentId=7043026


www.amecparagon.com/images/clip_image002_0001.jpg

Parasitic Energy Requirements – PC with CO₂ Capture

Parasitic Loss = 9.2%

Paradigm Changing Emerging Technologies

Room Temperature Ionic Liquids (RTILs)

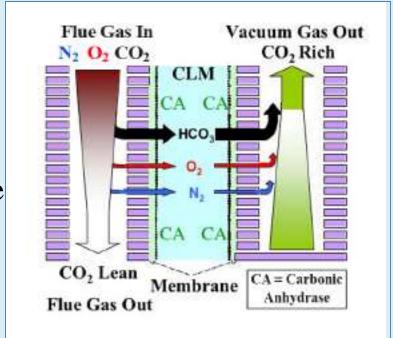
- Nonvolatile solvents negligible volatility
- High intrinsic CO₂ soluble at low pressure and room temperature
- Low solubility for O₂ and N₂
- High diversity of compounds to allow for custom "design" for fine tuning properties.
- When incorporated into a membrane show selectively high permeability to CO₂
- Do not require water to function
- Better performance than amine sorbents (MEAs)

These technologies <u>lower parasitic load</u> for the capture of CO₂.

Room Temperature Ionic Liquids (RTILs)

$$\begin{array}{c} O = C = O \\ N \stackrel{\bigoplus}{\nearrow} N \stackrel{\longleftarrow}{\nearrow} N \stackrel{\longleftarrow}{\longrightarrow} N \stackrel{\bigoplus}{\nearrow} N \stackrel{\bigoplus}{$$

Amine—tethered Cations (TSILs) from "Development of New Post-Combustion Carbin Dioxide Capture Solvents: Are Ionic Liquids the Answer?


Edward Maginn, University of Notre Dame (4/7/2008)

Paradigm Changing Emerging Technologies

Organic Membranes

- Carbozyme Thermoplastic Technology's (biomimetic technology)
- Fast catalyst carbonic anhydrase
- A high efficiency mass transfer hollow fiber design
- Low energy requirement does not require high value steam (low pressure and temperature)
- Differentiable permeable to HCO₃⁻
- Slightly permeable to O₂ & N₂ but move slowly through the membrane

Paradigm Changing Emerging Technologies

- Ceramic Membranes
 - made from inorganic materials (such as alumina, titania, zirconia oxides or some glassy materials)
 - used in separations in aggressive media (acids, strong solvents)
 - have excellent thermal stability which make them usable

in high temperature

Post Combustion (PC) CO₂ Capture

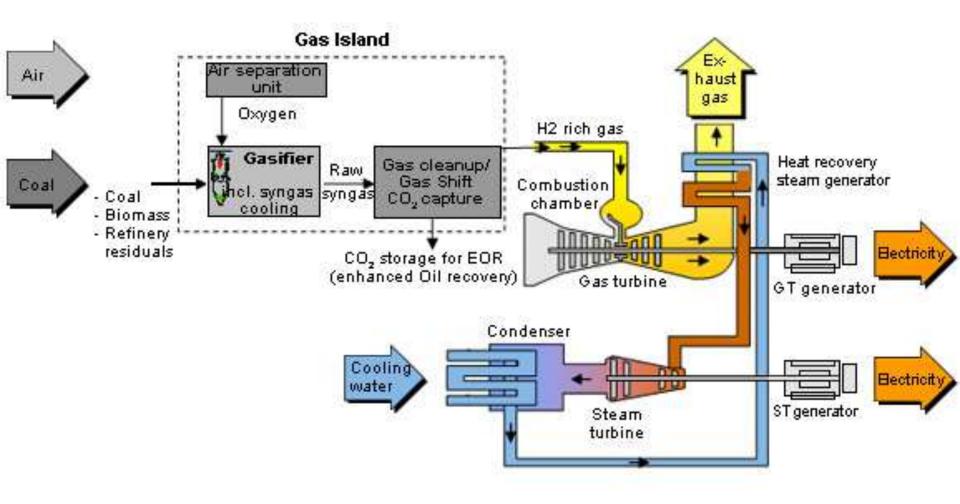
Pros:

- Feasible retro-fit
- Existing Technology
- Currently in use in other industries
 - > Soft drink
 - ➤ Natural gas

Cons:

- Parasitic Load
 - High running costs
 - Degrading solvents
- Limited large scale operating experience

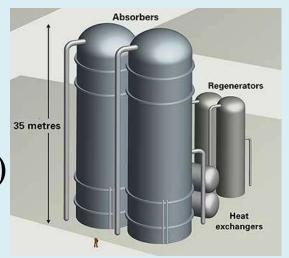
Pre Combustion - IGCC


Integrated Gasification Combined Cycle (IGCC)

$$C(s) + 2H_2O(g) \rightarrow CO_2(g) + 2H_2(g)$$

 $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$

- Separation of CO₂ gases easier
 - high concentration of CO₂ (40%)
 - high temperatures (400 °C).



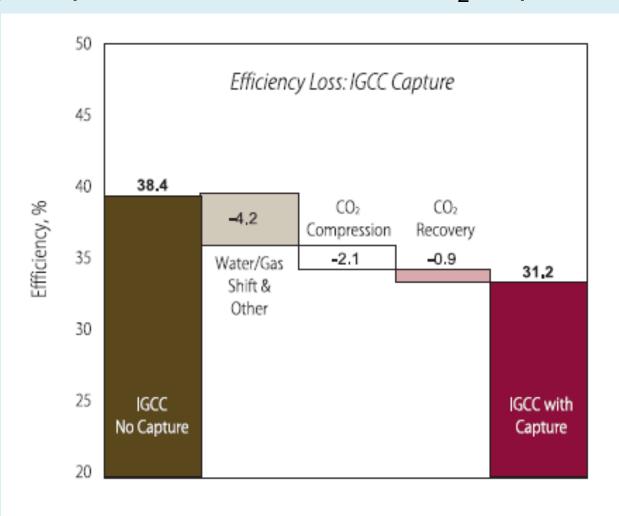
IGCC – Integrated Gasification Combined Cycle

Pre Combustion (IGCC) CO₂ Capture

- Syngas (H₂ + CO) burned to make steam & electricity
- High pressure system makes this easier
 - − Exhaust gas 90 − 95% CO₂
 - Henry's Law (pressure & solubility)
- High pressure absorber
- Low pressure regenerator

http://www.bp.com/sectiongenericar ticle.do?categoryId=9023211&conte ntId=7043026

View of IGCC Pilot Power Plant



www.hitachi.com/.../images/img_coal/coal_16.jpg

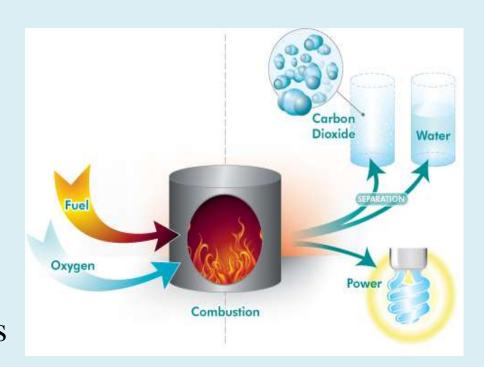
Parasitic Energy Requirements – IGCC with CO₂ Capture

Parasitic Loss = 7.2%

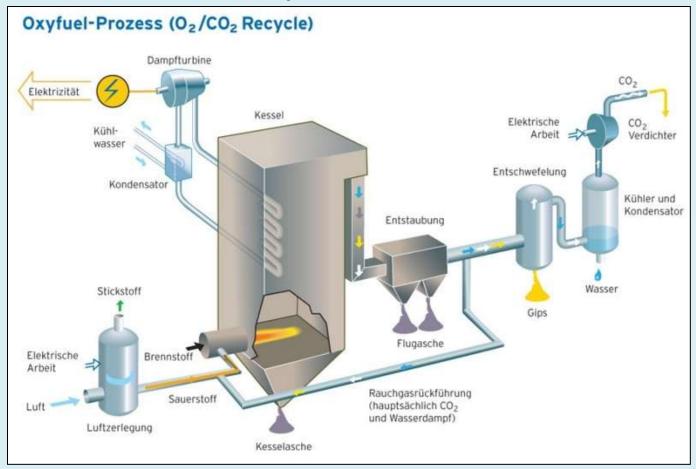
Pre Combustion (IGCC) CO₂ Capture

Pros:

- Proven industrial scale
 - Oil refineries
- 90 95% CO₂ captured
- Applies to natural gas and coal fired IGCC power plants
- Lowest technological risk
- Produces H₂ & liquid fuels

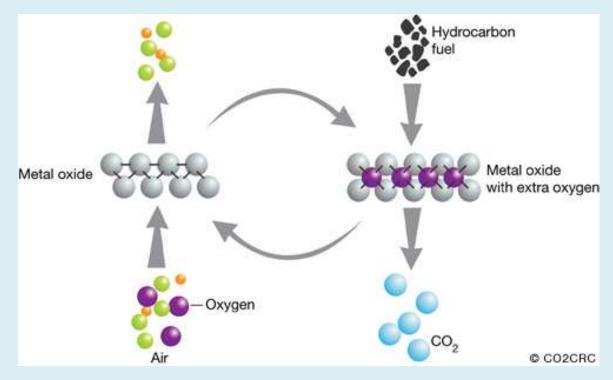

Cons:

- Requires chemical plant in front of gas turbine
- High investment costs of building new plant
- Efficiency of H₂ burning turbines lower than conventional turbines


Oxy-Combustion

- Burning coal in pure oxygen
- Exhaust stream CO₂ and H₂O
- Air Separation Unit (ASU)
 - Cryogenic process purifies
 O₂ from atmospheric air
 - Takes 15% of electricity plant generates to run

Oxy-Combustion



Pure O₂ from ASU used in coal combustion

Easy to separate CO₂ and H₂O based on physical properties (BP)

Chemical Looping Combustion (CLC)

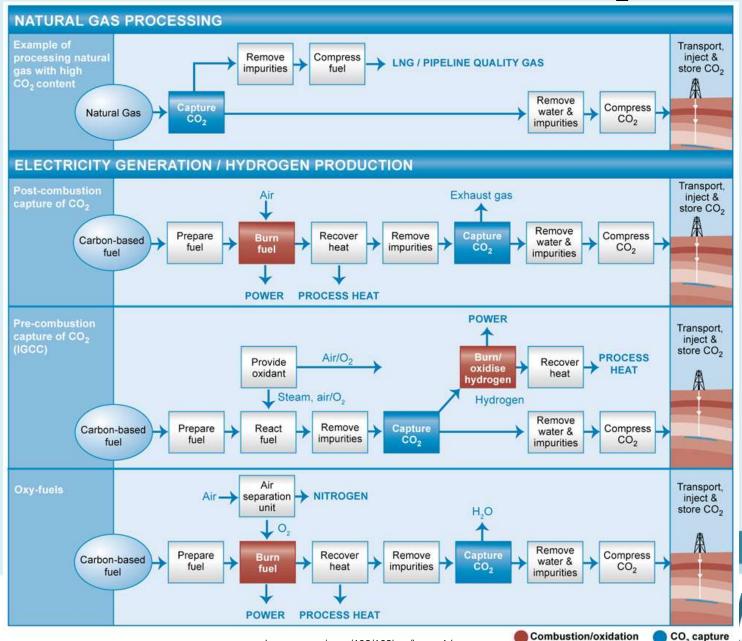
www.co2crc.com.au/.../chemical_looping.jpg

$$2\text{Ni}(s) + \text{O}_2(g) \rightarrow 2 \text{NiO}(s)$$

 $\underline{\text{C}(s)} + 2\text{NiO}(s) \rightarrow \underline{\text{CO}_2(s)} + 2\text{Ni}(s) + \text{Heat}$
 $\underline{\text{C}(s)} + \text{O}_2(g) \rightarrow \text{CO}_2(g) + \text{Heat}$

Oxy Combustion CO₂ "Capture"

Pros:


- Potential for 100% capture
- Few other harmful emissions
 - N₂ removed in ASU, no nitrogen oxides (NO_x)
- Retrofits possible on existing coal power plants

Cons:

- High energy penalty for cryogenic ASU
- Parasitic loss 8.3%
- Only one demonstration plant (Vallenfall)

Summary of Electricity Production & CO₂ Capture

Summary of Electricity Production & CO₂ Capture

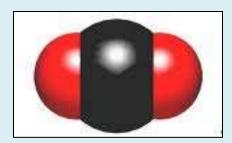
Performance	PC w/o CO ₂ capture	PC with CO ₂ capture	IGCC W/O CO ₂ capture	IGCC with CO ₂ capture	OXY with CO ₂ capture
Efficiency	38.5%	29.3%	38.4%	31.2%	30.6%
Coal feed (kg/h)	184,894	242,950	185,376	228,155	232,628
CO ₂ emitted (kg/h)	414,903	54,518	415,983	51,198	52,202
CO ₂ captured at 90% (kg/h)	0	490,662	0	460,782	469,817
CO ₂ emitted (g/kWh)	830	109	832	102	104
Cost of electric					
COE (¢/kWh)	4.78	7.69	5.13	6.52	6.98



Survey Question #2

Which type of power plant should we build as we replace our aging coal fired power plants over the next 30 years?

- A. Coal Fired Power Plant
- B. Coal fired power plant with CO₂ capture
- C. IGCC Power Plant
- D. IGCC Power Plant with CO₂ capture
- E. Oxy-Combustion Power plant wit CO₂ capture.



Type them in your chat window

Managing CO₂

- Carbon as a Commodity
- Carbon Sequestration

Recycling CO₂ into commercial products

www.parcbench.com/.../12/CO2_zoom_RTR1QBSN.jpg

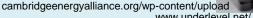
www.scienceclarified.com/.../uesc_02_img0110.jpg

CO₂ as a Commodity

Production of Urea for fertilizer

www.orau.org/.../fertilizer.jpg

3.bp.blogspot.com/.../5HRLv4clqxY/s1600/pic3.ipq


- Refrigeration Systems safer than CFC's
- Inert Agent for Food Packaging

www.daelimcorp.co.kr/.../sp_chem/img_photo34.jpg

Carbonated Beverages

www.underlevel.net/.../03/moving_a_refrig_2.jpg

CO₂ as a Commodity

4.bp.blogspot.com/.../alam-fire+extinguisher.jpg

www.agricultureinformation.com/mag/wp-content...

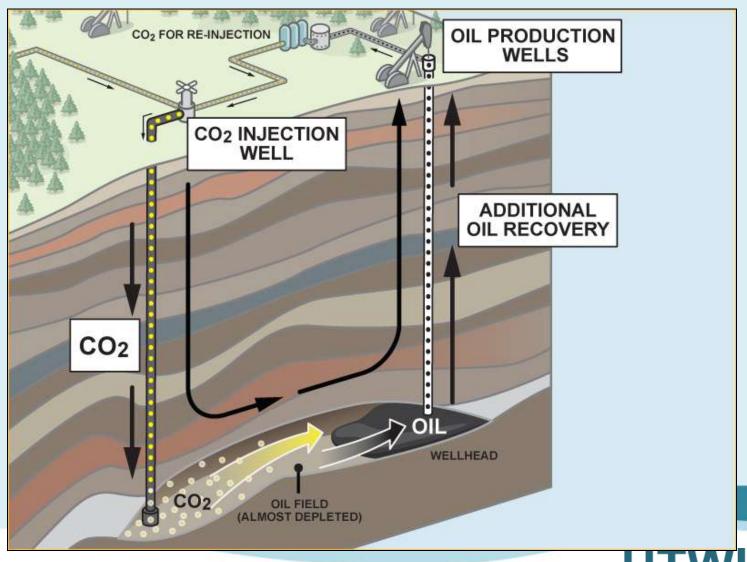
www.225steel.com/fabrication-images/ist2_3991...

www.coarse bubble diffuser.com/images/flex cap-1...

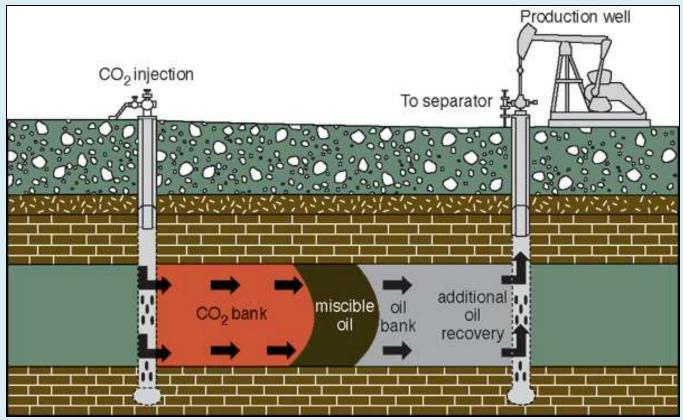
- Welding Systems
- Fire Extinguishers
- Water treatment processes
- Horticulture

CO₂ as a Commodity

• Precipitated CaCO₃ for paper industry


img.alibaba.com/img/imagerepos/cn/22/cn220037...

www.fmcsgvs.com/images/pprolls_01.jpg



CO₂ as a Commodity – Enhanced Oil Recovery

High Tech Workforce Initiative

Enhanced Oil Recover (EOR)

http://www.kgs.ku.edu/Publications/PIC/pic27.html

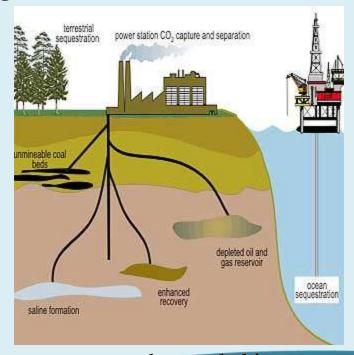
CO₂ used as a solvent to increase oil field production.

 $petrolog.typepad.com/photos/blog_illustration...$

1.2 billion cubic feet CO₂ per day transferred from Southern Colorado CO₂ domes to West Texas Permian oil fields.

25% of today's oil production generated by EOR with CO₂.

EOR Projects


- Occidental Petroleum 13.5 million tons of
 CO₂ per year plant in West Texas (\$1.1 billion)
 - World's largest user of EOR
- St. John's CO₂ Dome in eastern Arizona and Western New Mexico border.
 - 5 trillion cubic feet CO₂
 - 30 billion cubic feet He
 - 350 mile pipeline to pump 500 million cubic feet / day to West Texas Permian oil fields.

CO₂ Sequestration

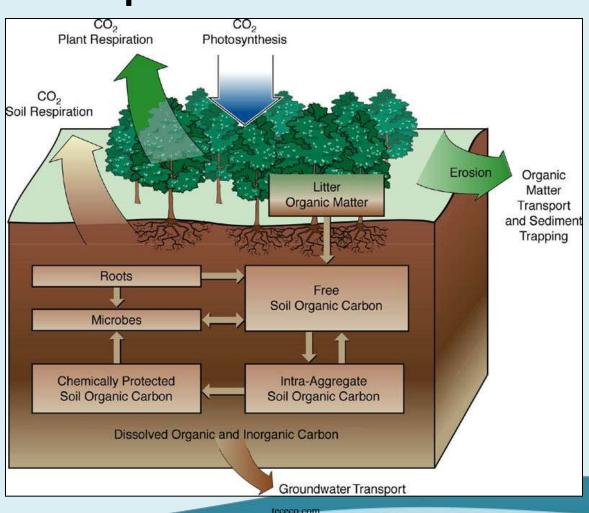
The process of removing carbon from the atmosphere and depositing it in a reservoir.

- Biological
- Ocean
- Geological

carboncycle.biz

Biological Sequestration

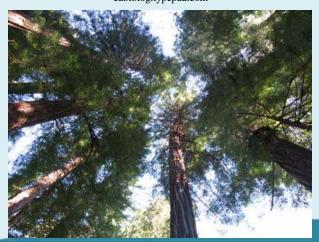
- Managing land in ways which enhance the natural absorption of CO₂ by vegetation and soil.
- Ratio of soil carbon to carbon in vegetation varies depending on the type of ecosystem
 - Tropical rain forest (1/1)
 - Boreal forest (5/1)
 - Wetlands (15/1)
 - Grasslands (33/1)
 - Croplands (43/1)



epa.state.on.us

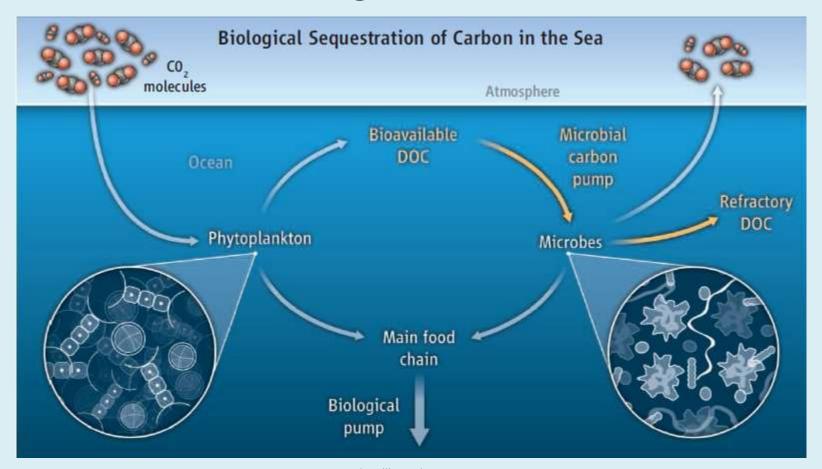
Biological Sequestration

- Four forest components:
 - Soil (59%)
 - Trees (31%)
 - Forest floor or litter (9%)
 - low growing vegetation(1%)


Biological Sequestration

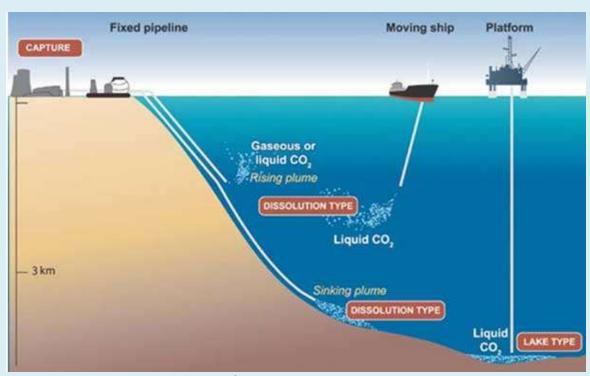
northcoastirwmp.net

- Replanting trees on land in USA:
 - Increases annual sequestration by
 2.2 to 9.5 metric tons per acre for
 120 years
 - Good forestry practices implemented
 - 40 to 60 billion tons over 50 years
 - 0.8 to 1.2 billion metric tons per year
 - 13% to 20% of nation's CO₂ emission in 2006


cabiblog.typepad.com

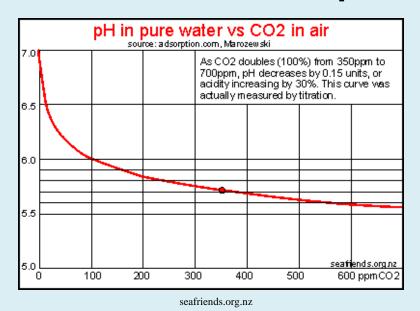
epd372.blogspot.com

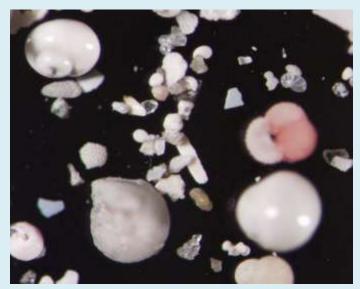
Ocean Biological Sequestration



theresilientearth.com

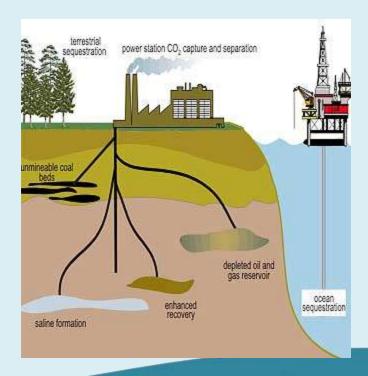
Ocean Sequestration


- Dissolution by droplet plume or dense plum
- Dispersion by towed pipe or dry ice
- Isolation creating a CO₂ "lake"



powerplantccs.com

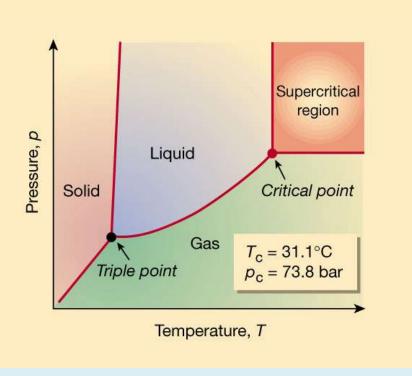
Potential Problem with Ocean CO₂ Sequestration?


blogs.nature.com

"Anthropogenic carbon dioxide has been accumulating in the oceans, lowering both the concentration of carbonate ions and the pH, resulting in the acidification of sea water. Previous laboratory experiments have shown that decreased carbonate ion concentrations cause many marine calcareous organisms to show reduced calcification rates." Andrew Moy, *Nature Geoscience*, 2, 276 – 280 (2009)

CO₂ Sequestration

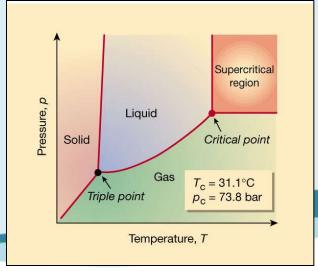
- Geological
 - Depleted oil and gas reservoirs
 - Unmineable coal beds
 - Deep saline aquifers



Compression of CO₂

Triple Point of CO₂

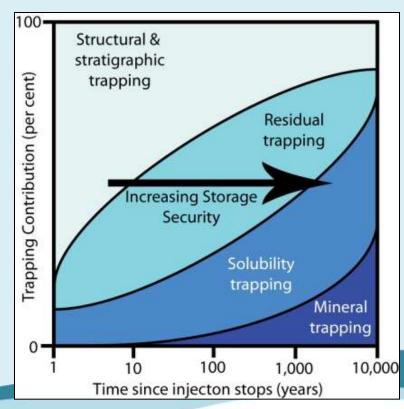
- 217 K (- 57°C)
- 517 kPa (5.1 ATM)


www.nature.com/.../n6783/images/405129aa.2.jpg

CO, VOLUME REDUCING WITH DEPTH An approximate 1000m3 volume of CO. at ground level Ground level 20m³ CO transitions 11m³ from gas to supercritical fluid Critical depth (approx) Depth (km) 2.7m3 Little further compression below this depth 2.7m3 When CO, is pumped underground, it becomes a dense supercritical fluid at around 800m below the surface. Its volume reduces dramatically as it descends, compared with its original volume (in this example, 1000m3 at the surface). This is one factor which makes geological storage of large quantities of CO, attractive. Based on IPCC Special Report: Carbon Dioxide Capture and Storage (2005)

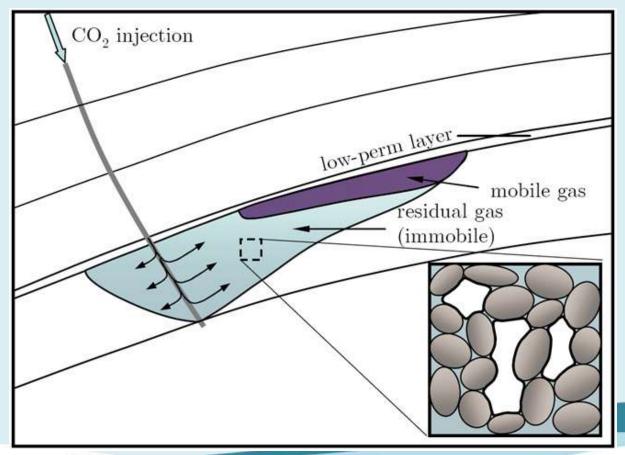
Compression of CO₂

"When CO₂ is pumped underground it becomes a dense supercritical fluid around 800 m below the surface."


www.nature.com/.../n6783/images/405129aa.2.jpg

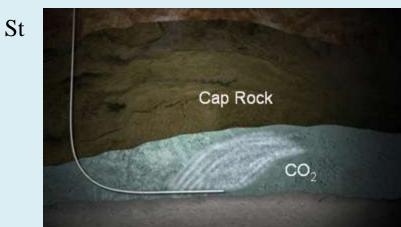
CO₂ Sequestration Mechanism

The increasing storage security of CO₂ may take anywhere from 10 to 10,000 years.


- Structural Storage
- Residual Storage
- Solubility Storage
- Mineral Storage

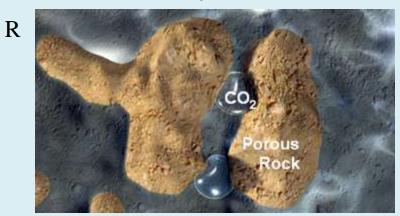
CO₂ Storage Mechanism

Structural → Residual → Solubility → Mineral



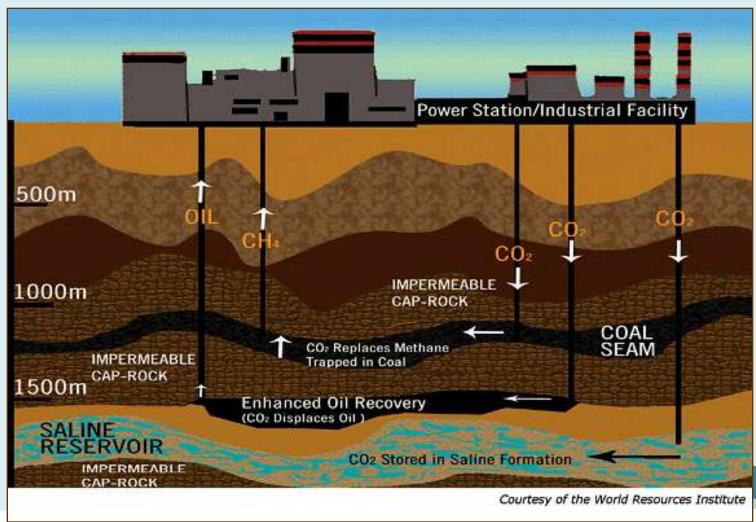
CO₂ Storage Mechanism

Structural → Residual → Solubility → Mineral

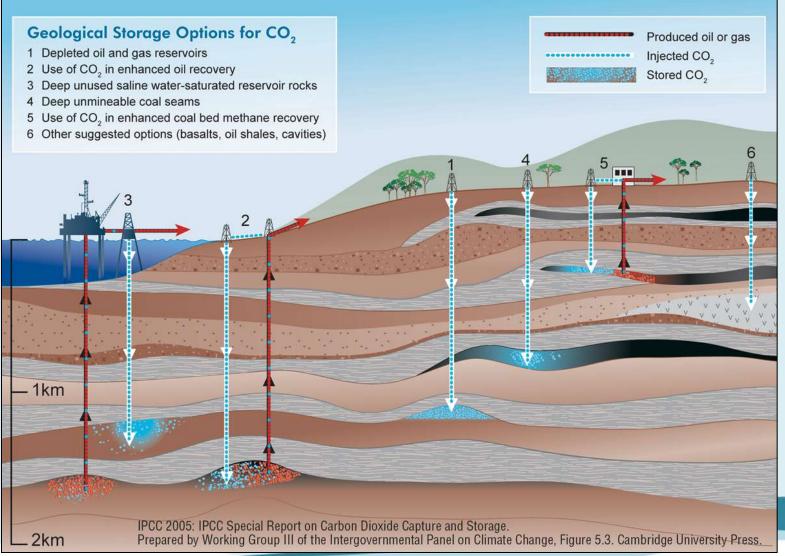

M

co2captureproject.org

co2captureproject.org


co2captureproject.org

co2captureproject.org



Geological CO₂ Sequestration

Summary of Geological Sequestration

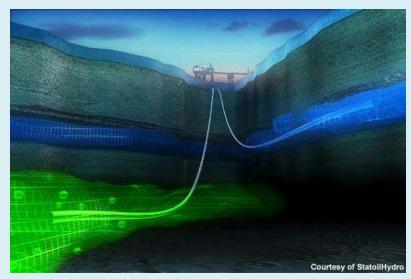
Sequestration Sites

Current and Planned Projects

world storage sites SCCS

http://www.geos.ed.ac.uk/sccs/storage/storageSitesFree.html

- 38 Carbon Dioxide Capture and Storage Projects
- 15 Carbon Dioxide Storage Only Projects
- Additional 30 Carbon Dioxide Capture and Storage Projects recently announced



Sequestration of CO₂ in Norway

Sequestration of CO₂ in Norway

Sleipner Field

Sleipner T

CO2 Injection Well

CO2

Froduction wells

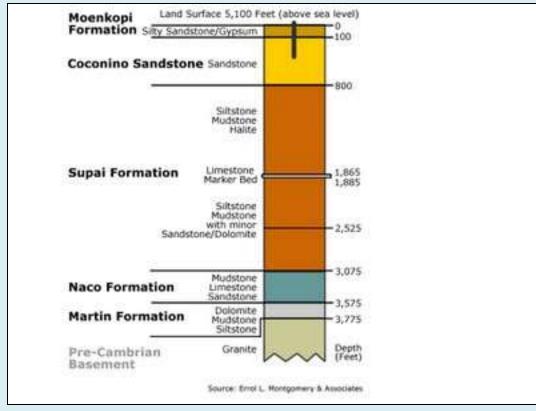
2000
If simulal Formation

blog.norway.com

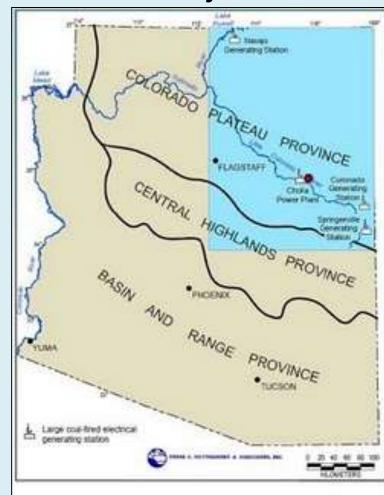
sequestration.mit.edu

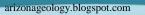
newenergynews.blogspot.com

http://www.bellona.org/ccs/Artikler/storage


US Regional Carbon Sequestration Projects

- Characterization Phase
 (2003 2005)
 characterized opportunities
 for carbon sequestration
- Validation Phase
 (2005 2010)
 small scale field tests
- Development Phase
 (2008 2017)
 Conduct large volume carbon storage tests


High Tech Workforce Initiative


Arizona Carbon Sequestration Projects

arizon ageology. blog spot.com

Arizona Public Service (APS)
Cholla Drill Site
2000 tons CO₂ injected into saline formation



Survey 3

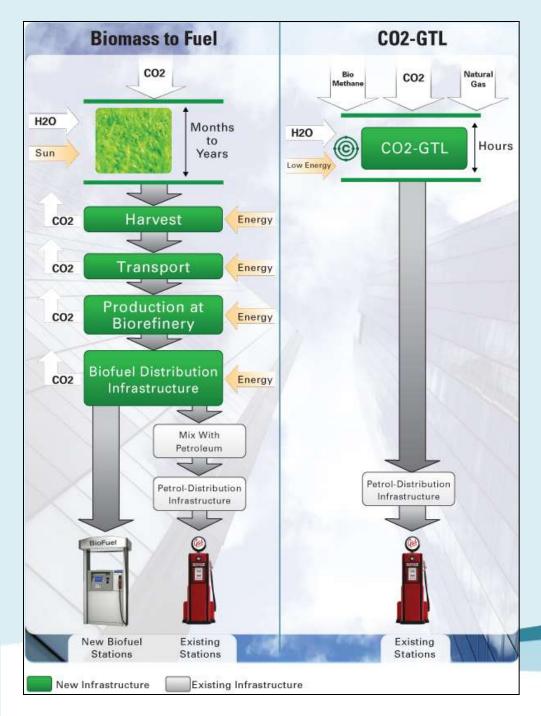
Which of the following carbon sequestration storage options will not be utilized much in the future?

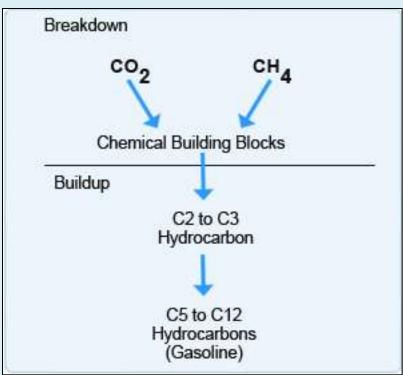
- A. Depleted oil and gas reservoirs
- B. Oceans
- C. Unmineable coal beds
- D. Deep saline aquifers

Type them in your chat window

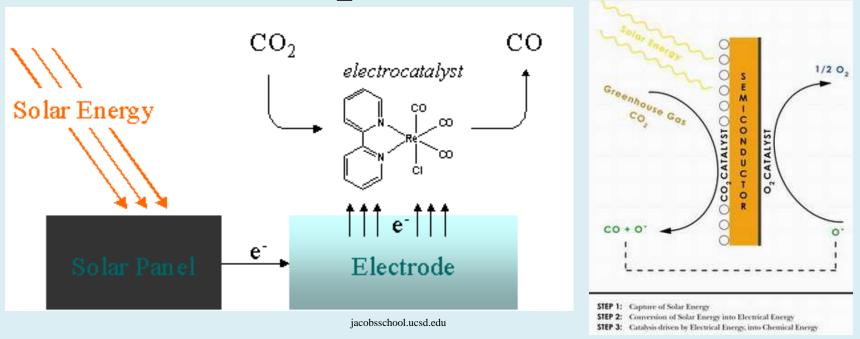
Recycling CO₂ into Commercial Products

Potential CO₂ Solutions


Recycling CO₂ to Commercial Products


Carbon Sciences

- Uses inexpensive, renewable bio-molecules (encapsulated) to catalyze chemical reactions transforming CO₂ and water to fuel.
- Key to their process:
 - Able to prolong the life of the enzyme (biocatalyst) to reduce costs.
 - Reduced reaction time from 10 hours to minutes (8-10)
 - Hg kills catalyst so flue gas must be clean

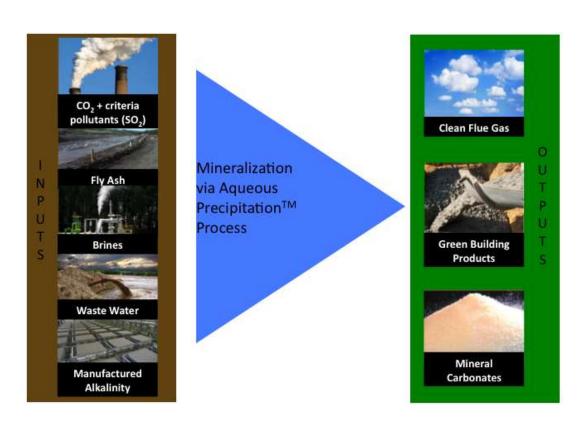


$$CH_4 + CO_2 \rightarrow (C_{5-10}H_n) + H_2O$$

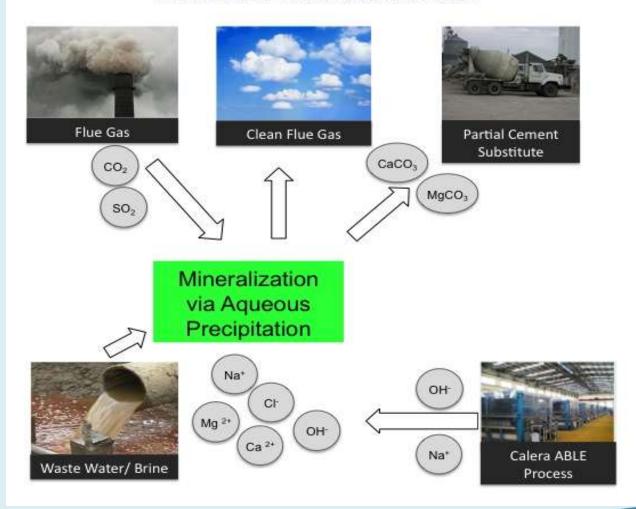
• Kubiak (UCSD) – uses semiconductors to trap solar energy and covert it to electrical energy which is then used to split the CO₂ into CO and O₂

Sandia National Lab

- invented a reactor containing a ceramic ring made of iron oxide and cobalt. A solar concentrator heats the ceramic material to 2,700 degrees Fahrenheit, forcing it to give up its oxygen.
- The ring then rotates to a colder chamber containing CO₂.
- The ceramic borrows oxygen atoms from the CO₂, leaving carbon monoxide, CO.
- CO can be used to make fuel.


technologyreview com

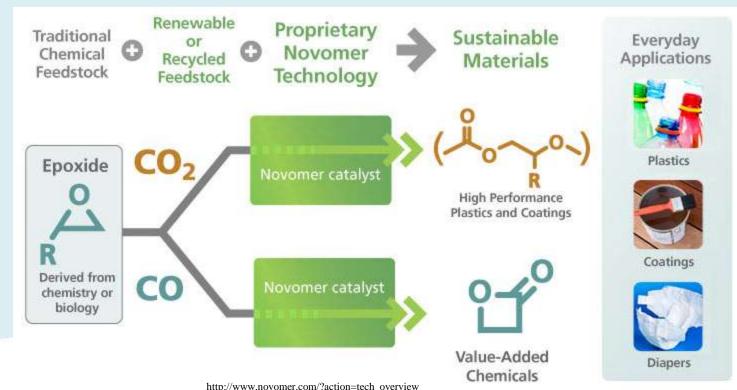
Calera


Use flue gas CO₂ and combine it with sea water to make cement.

http://calera.com

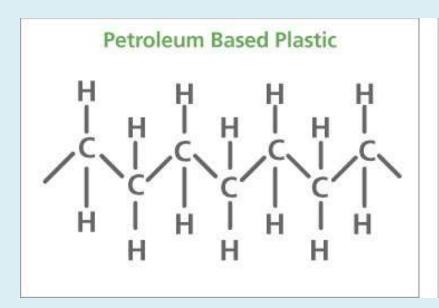
The Science: Carbonate Formation

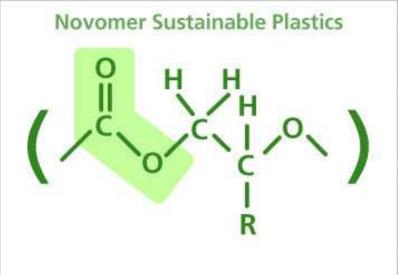
http://calera.com/index.php/technology/the_science/



Novomer: A green plastics company

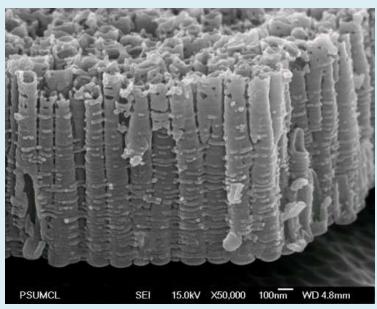
 utilizes CO₂ and CO feed stocks to produce plastics for specific high-tech markets.

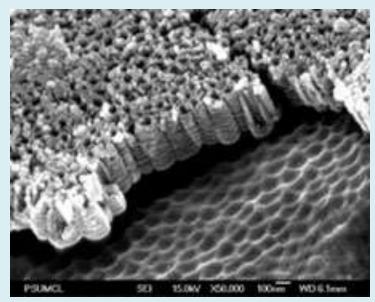



www.rsc.org/.../co2-chimney-410_tcm18-187444.jpg

Novomer: http://www.novomer.com

Polyethylene is a long chain of carbon molecules derived from natural gas or crude oil. Direct incorporation of CO₂ into the molecular backbone to create a more sustainable material.


http://www.novomer.com/?action=tech_how_it_works


• Grimes (Penn State)

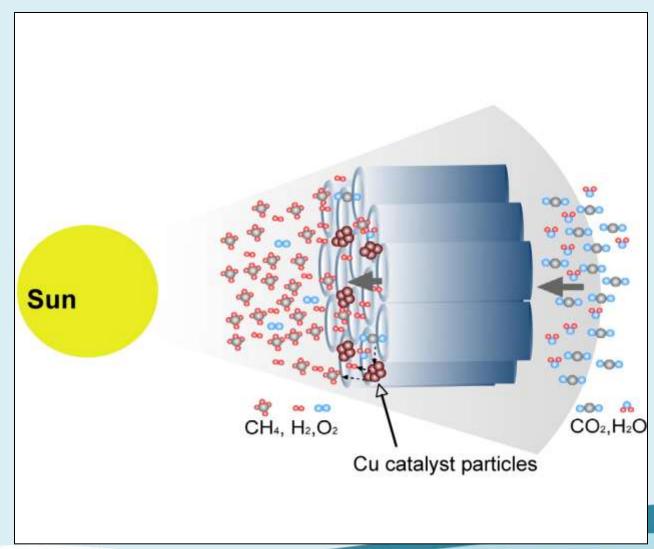
 Designed a photocatalyst of nitrogen-doped titania nanotubules sputter coated with an ultrathin layer of

platinum or copper catalyst.

http://images.iop.org/objects/ntw/news/5/1/6/crosssection.jpg

http://www.mri.psu.edu/articles/BC/faculty/CraigGrimes/grimes_c_3.jpg

http://spie.org/Images/Graphics/Newsroom/Imported/1148/1148_fig1.jpg


http://spie.org/x25474.xml?ArticleID=x25474

The titania captures the high energy UV while the nanotubules provide the surface area for the reactions to occur.

Captured CO₂ is combined with water vapor to react and make hydrogen (H₂), oxygen (O₂) and methane (CH₄) gases.

$CO_2 + H_2O \rightarrow CH_4 + H_2 + O_2$

Global Research Technologies, LLC (GRT)

- Klaus Lackner, Professor,
 Columbia University's
 Earth Institute & School of
 Engineering
- Membrane technology is used to extract CO₂ out of ambient air.
- A type of artificial trees

http://ehp.niehs.nih.gov/docs/2009/117-4/trees.jpg



Survey 4

In your opinion, which type of the following CO₂ recycling methods will be most successful?

- A. Celera's cement
- B. Kubiak's semiconductor solar cell (CO)
- C. Novomer's plastic bottles
- D. Carbon Science's gasoline
- E. Grimes nanotechnology solar cell (CH₄)

Type them in your chat window

Acknowledgements

- Diversified Energy
 - Phillip Brown & Dave Thompson
- HTWI Externship Program
 - Lizette Acosta
- MCCCD Office of Workforce Development
 - MATEC & Mark Viquesney
- National Science Foundation
 - High Tech Workforce Development Grant

Help us become better

Please complete this quick 1 minute survey to help us become better and to let us know what webinars you would like to see in the future.

http://www.questionpro.com/t/ABkVkZIwJD

Thank You for attending today's HTWI webinar

Carbon Capture and Storage (CCS) and Potential CO₂ Solutions

Hosted by MATEC Networks

www.matecnetworks.org

