
August								September						Octobe						
S	М	Т	w	Th	F	S	s	М	T	w	Th	F	S	S	М	T	w	Th	F	s
	1	2	3	4	5	6					1	2	3							1
7	8	9	10	11	12	13	4	. 5	6	7=	- 8 -	9	10	2	- 3 -	4	- 5	6	7	8
14	15	16	17	18	19	20	11	12	13	14	15	16	17	9	10	11	12	13	14	15
21	22	23	24	25	26	27	18	19	20	21	22	23	24	16	17	18	19	20	21	2:
28	29	30	31				25	26	27	28	29	30		30	24	25	26	27	28	29
	Today						External evaluator should be lined up						Proposals due					, ,		

Webinar recording Presentation slides Resource handout Highlight tangible evidence of service delivery Include numbers only if known or certain thresholds are necessary to bring about outcomes

SHORT-TERM OUTCOMES

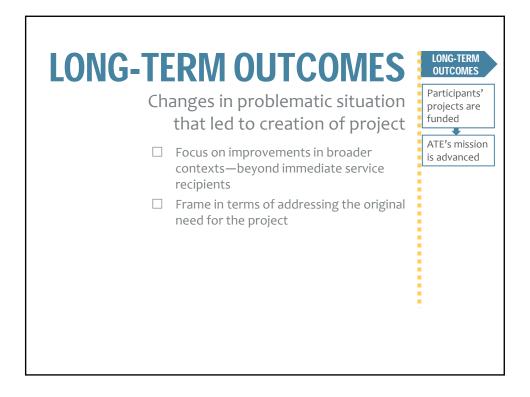
Immediate **changes** brought about by project activities and outputs

☐ Focus on **changes** in individuallevel knowledge, skills, attitudes, or behaviors

SHORT-TERM OUTCOMES

Participants know how to create a logic model

Participants know how to integrate logic models into funding proposals


MID-TERM OUTCOMES

Changes that occur due to short-term outcomes

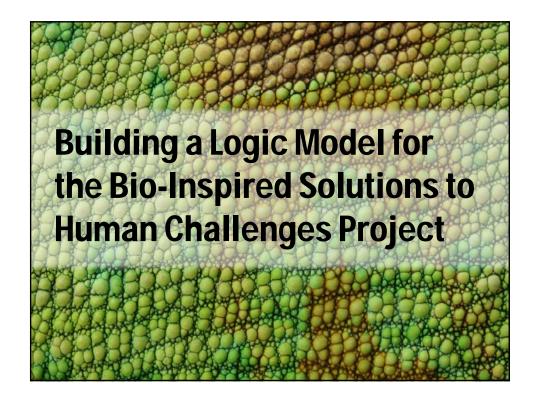
- ☐ Articulate **link** between immediate, individual outcomes to improvements in broader context (long-term outcomes)
- ☐ Focus on target audience, not project

MID-TERM OUTCOMES

Participants develop good logic models and include them in their proposals

OUTCOMES SHORT-TERM MID-TERM LONG-TERM **OUTCOMES OUTCOMES OUTCOMES** Participants Participants Participants' ☐ Represent important know how to develop good projects are changes or improvements logic models funded create a logic model and include ☐ Realistic ATE's mission them in their ☐ Logically linked **Participants** proposals is advanced know how to ☐ Appropriately sequenced integrate ☐ Are not about the project logic models into funding itself proposals

Logic Models: Getting Them Right and Using Them Well


LOGIC MODEL USES

Include in funding proposal

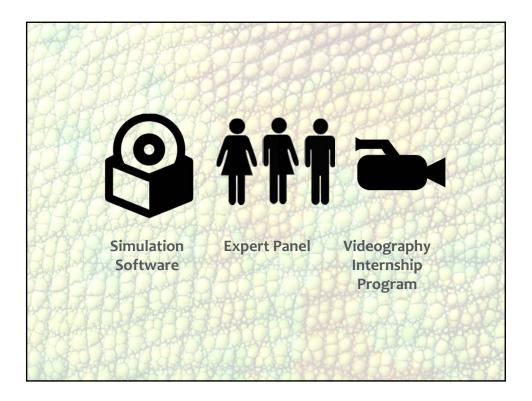
Evaluation planning

Project management

Communication to stakeholders

8/17/2016

WEBINAR
Logic Models: Getting Them Right and Using Them Well



8/17/2016

Logic Models: Getting Them Right and Using Them Well

Bio-Inspired Solutions to Human Challenges

Project Abstract

In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

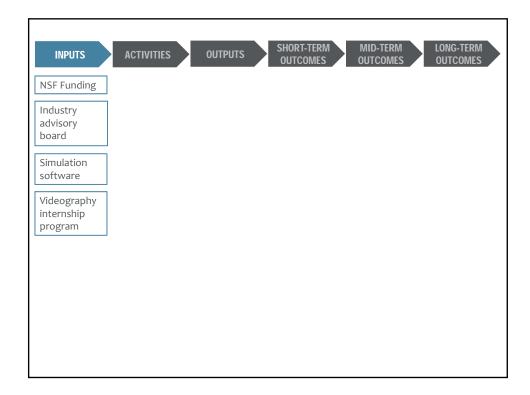
The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.

Logic Models: Getting Them Right and Using Them Well

Chat

Bio-Inspired Solutions to Human Challenges

Project Abstract


In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.

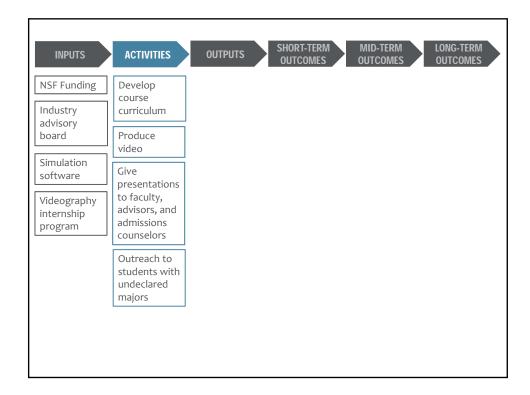
What are the project's main INPUTS?

Logic Models: Getting Them Right and Using Them Well

Chat

Bio-Inspired Solutions to Human Challenges

Project Abstract


In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.

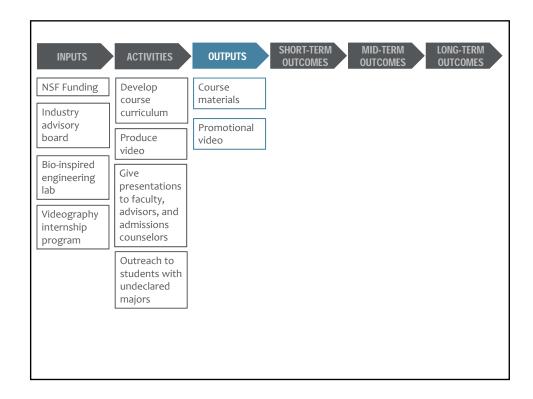
What are the project's main ACTIVITIES?

Logic Models: Getting Them Right and Using Them Well

Chat

Bio-Inspired Solutions to Human Challenges

Project Abstract


In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.

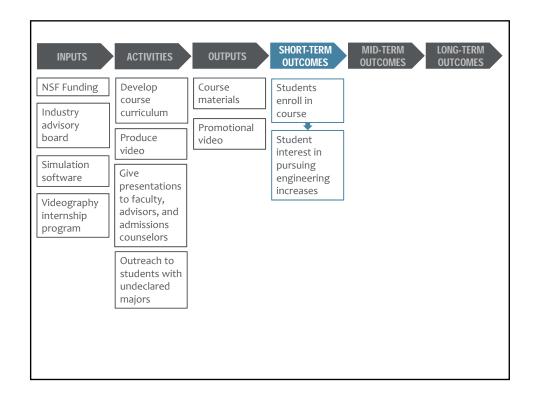
What are the project's main OUTPUTS?

WEBINAR

Chat

Bio-Inspired Solutions to Human Challenges

Project Abstract


In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

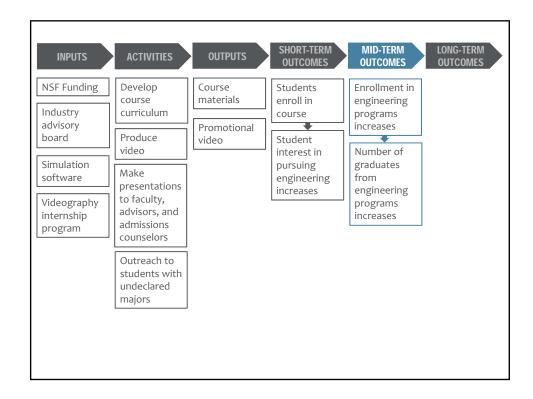
The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.

What are the project's intended SHORT-TERM OUTCOMES?

Chat

Bio-Inspired Solutions to Human Challenges

Project Abstract


In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

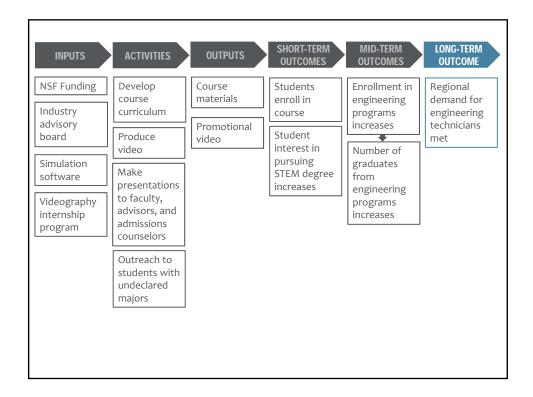
The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.

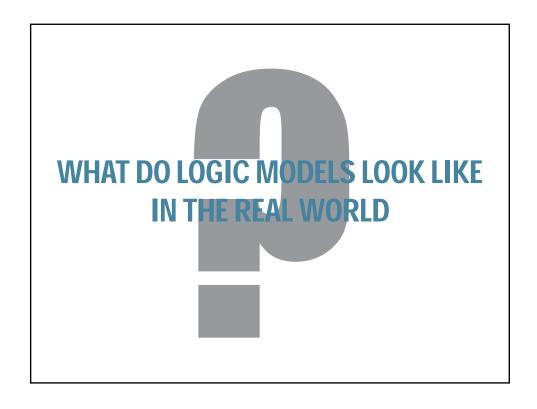
What are the project's intended MID-TERM OUTCOMES?

Chat

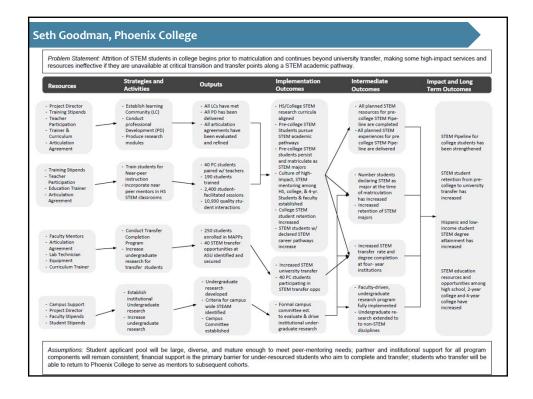
Bio-Inspired Solutions to Human Challenges

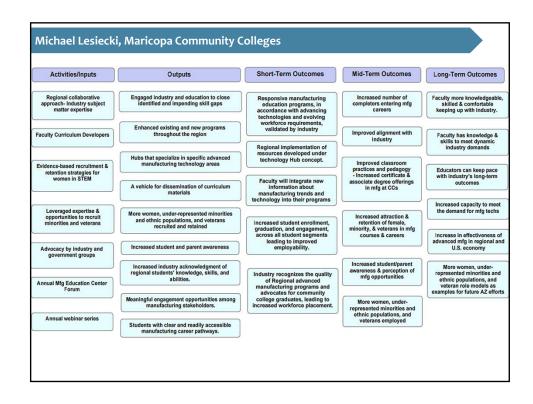
Project Abstract

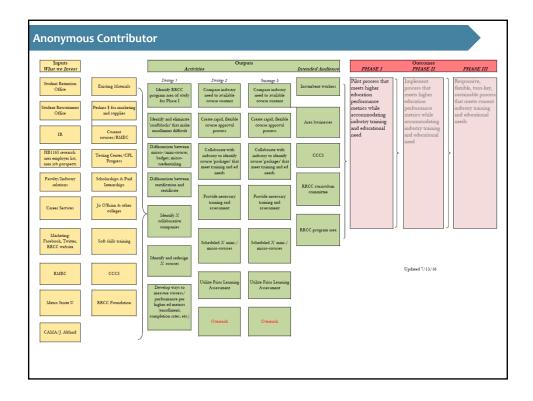

In spite of growing demand for technicians among local manufacturers, Chameleon Community College is experiencing under-enrollment in engineering technology and pre-engineering programs.

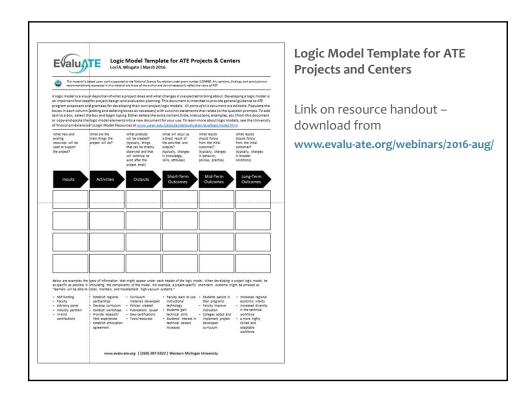

To address this problem, the college is developing a general education science course about bio-inspired engineering and design that will attract students with undeclared majors to these and other STEM programs.

The main activities include (a) completion of the course curriculum; (b) creation of a short video about bioinspired engineering; (c) presentations to admissions counselors, advisors, and faculty about the focus and purpose of the course; and (d) outreach to students with undeclared majors.

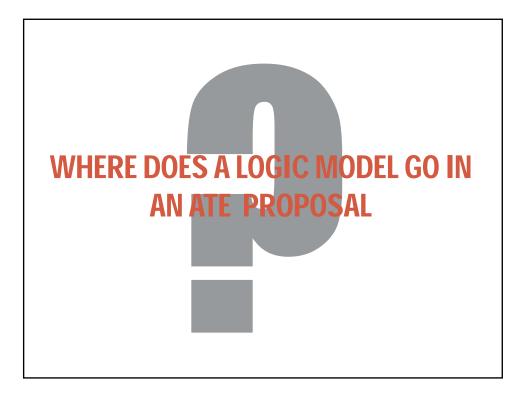

The project will leverage existing resources, including simulation software developed with funding from a prior NSF award, an advisory panel of industry experts, and the college's videography internship program.


What are the project's intended LONG-TERM OUTCOMES?





Inputs/ Resources	Activities /Tasks	Outputs / Deliverables	Short-Term Outcomes	Mid-Term Outcomes	Long-Term Outcomes
Needs Assess- ment & Net- working Development •Survey tool •List of experts •Interview strategy	Conduct Survey Recruit faculty & students Conduct interviews Analyze Survey and interviews	Prioritize	•Establish a baseline for industry needs & standards with the survey and interview results	Use data as the framework for the pilot QCS/CSS curricula design	Needs assessment findings are accepted as industry standards Researchers present and publish on the QCS/CSS model
Faculty Training •Teach-Flipped MOOC •QKD platform technology installed •QCS Learning Lab setup	Revise Teach- Flipped MOOC for QCS faculty Learning Lab used for training All participating faculty complete training	Completed Curricula Complete MOOC & technical training Collect/analyze training data	•Faculty are prepared to teach in a flipped format and know how to integrate the QKD platform	Due to positive impact, more faculty interested & recruited Faculty translate the flipped model and QKD platform to other courses	Utah QCS/CSS coalition becomes a national / international model Curricula are marketed as QCS professional development
Pilot Curricula Students recruited for SLCC pilot Piloted/revised Curricula •Class observa- tions by CTLE & O&eLS	Curricula built in LMS Rubrics created Complete pilot courses Collect feedback, focus groups, interviews, and classroom observations	of pilot courses •Completed	Successful implementation of pilot courses Pilot data used to revise course Successful course used to recruit students for next courses	Word of mouth referrals increase students' interest and registration Students taking SLCC course continue on to University course	Increase in post- NSF financial support Increased QCS national reputation Increase in other cross-discipline teaching
QCS Student Outcomes •Pre- & post- knowledge instrument •Student learning assessments ready		Courses successfully completed by students Students move onto the next course in series	Students report QCS increased knowledge and skills confidence Students grades align to their perceived learning	•Increased # of QCS students in QCS Pathway •Higher retention rate of QCS/CSS students •Better academic performance for QCS students than non-QCS students	•Students are being hired and retained based on QCS knowledge, skills and dispositions as a result of participation in QCS program
Inter- institutional Collaboration •Participants in the study willing to be part of the interdiscipline collaboration research	Compile formative data on collaboration Conduct end-of- grant interviews for cross-institu- tional collabor- ation & synergy	Data Analysis for K-12 with College collaboration Cross-Institut- ional findings shared with stakeholders on QCS website	•Faculty and students are actively engaged across the 3 levels of QCS courses	Establishment of a cross-institutional culture of collaboration Increased number of presentations and publications across the 3 QCS course levels	Other programs establish pathways from high school to college Other successful K-12 - College pathway grants result from this QCS project


LOGIC MODEL USES

Include in funding proposal

Evaluation planning

Project management

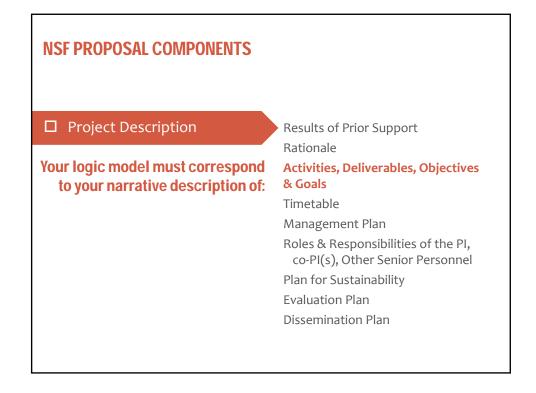
Communication to stakeholders

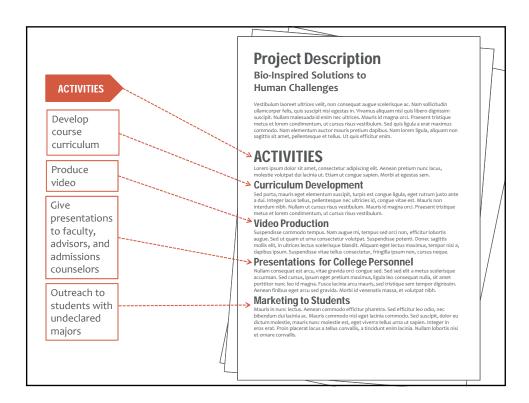
NSF PROPOSAL COMPONENTS Cover Sheet	
☐ Project Summary	Put here if it will not displace critical
☐ Project Description	information within the 15 pages
☐ References Cited	
☐ Budget & Budget Justification	
☐ Current & Pending Support	
☐ Facilities, Equipment & Other Resources	
☐ Supplementary Documents	Otherwise, put here

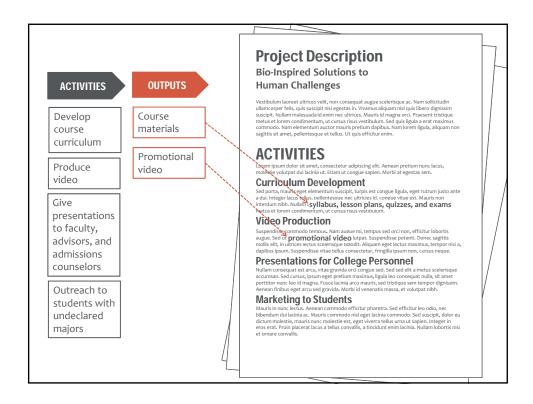
Logic Models: Getting Them Right and Using Them Well

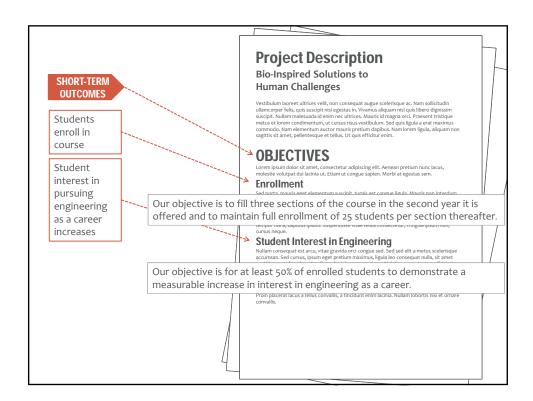
NSF GRANT PROPOSAL GUIDE

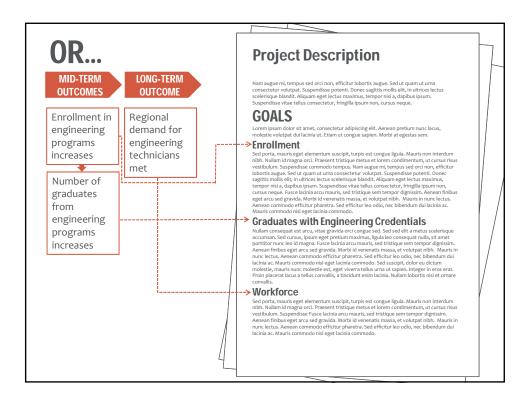
Except as specified below, special information and supplementary documentation must be included as part of the Project Description (or part of the budget justification), if it is relevant to determining the quality of the proposed work.

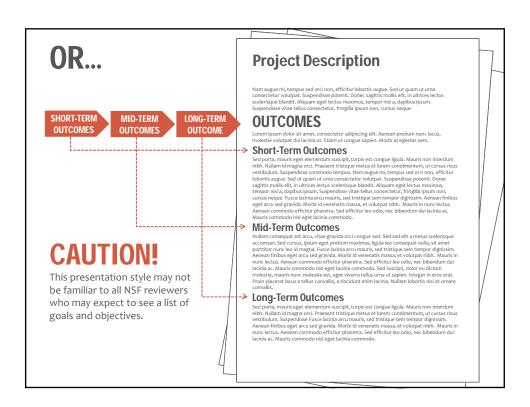

If it is important that reviewers see it, do not put it in Supplementary Documents.


Reviewers are not required to review supplementary documents.


☐ Supplementary Documents


CAUTION!


WHAT IS THE RELATIONSHIP
BETWEEN A LOGIC MODEL AND
A PROJECT DESCRIPTION
IN A PROPOSAL?



ONE SIMPLE RULE

description should include all elements of logic model.

Narrative project All major activities, deliverables, goals, etc. in narrative should appear in logic model.

NSF PROPOSAL COMPONENTS

☐ Project Description

Results of Prior Support

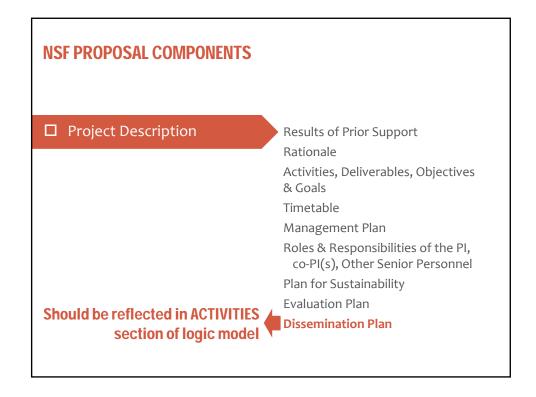
Rationale

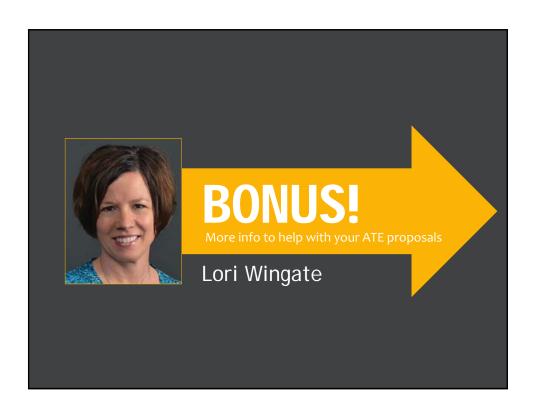
Activities, Deliverables, Objectives

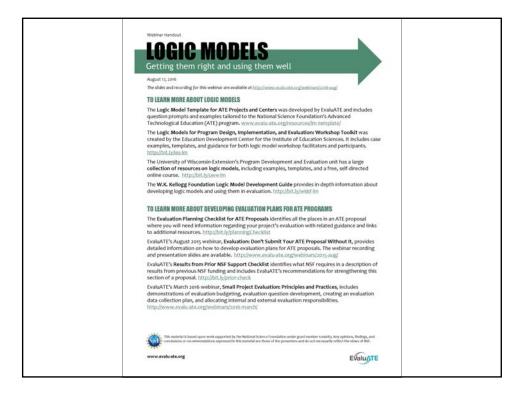
& Goals

Timetable

Management Plan


Roles & Responsibilities of the PI, co-PI(s), Other Senior Personnel


Plan for Sustainability


Align evaluation questions and data collection plan to logic (model elements

Evaluation Plan

Dissemination Plan

WEBINAR ON INTEGRATING EVALUATION INTO ATE PROPOSALS

Evaluation: Don't Submit Your ATE Proposal Without It

August 2015

- Webinar recording
- Presentation slides

RESULTS FROM PRIOR NSF SUPPORT CHECKLIST

Required and recommended elements of descriptions of prior NSF support

Small Project Evaluation: Principles and Practices

March 2016

- Webinar recording
- Presentation slides
- Resource handout

Including demonstrations of

- evaluation budgeting
- evaluation question development
- creating an evaluation data collection plan
- allocating internal and external evaluation responsibilities

Tips for a strong NSF proposal evaluation plan

by Leslie Goodyear

WWW.EVALU-ATE.ORG/BLOG

