## SOLAR PV: WATTS FROM THE SUN MAY ADVANCE THESE NATIONAL ENERGY LITERACY STANDARDS

1 Energy is a physical quantity that follows precise natural laws.

**1.5 Energy comes in different forms and can be divided into categories.** Forms of energy include light energy, elastic energy, chemical energy, and more. There are two categories that all energy falls into: kinetic and potential. Kinetic describes types of energy associated with motion. Potential describes energy possessed by an object or system due to its position relative to another object or system and forces between the two. Some forms of energy are part kinetic and part potential energy.

**1.7 Many different units are used to quantify energy.** As with other physical quantities, many different units are associated with energy. For example, joules, calories, ergs, kilowatt-hours, and BTUs are all units of energy. Given a quantity of energy in one set of units, one can always convert it to another (e.g., 1 calorie = 4.186 joules).

**1.8 Power is a measure of energy transfer rate.** It is useful to talk about the rate at which energy is transferred from one system to another (energy per time). This rate is called power. One joule of energy transferred in one second is called a Watt (i.e., 1 joule/second = 1 Watt).

2 Physical processes on Earth are the result of energy flow through the Earth system.

**2.2 Sunlight, gravitational potential, decay of radioactive isotopes, and rotation of the Earth are the major sources of energy driving physical processes on Earth.** Sunlight is a source external to Earth, while radioactive isotopes and gravitational potential, with the exception of tidal energy, are internal. Radioactive isotopes and gravity work together to produce geothermal energy beneath Earth's surface. Earth's rotation influences global flow of air and water.

4 Various sources of energy can be used to power human activities, and often this energy must be transferred from source to destination.

**4.1 Humans transfer and transform energy from the environment into forms useful for human endeavors.** The primary sources of energy in the environment include fuels like coal, oil, natural gas, uranium, and biomass. All primary source fuels except biomass are non-renewable. Primary sources also include renewable sources such as sunlight, wind, moving water, and geothermal energy.

**4.5 Humans generate electricity in multiple ways.** When a magnet moves or magnetic field changes relative to a coil of wire, electrons are induced to flow in the wire. Most human generation of electricity happens in this way. Electrons can also be induced to flow through direct interaction with light particles; this is the basis upon which a solar cell operates. Other means of generating electricity include electrochemical, piezoelectric, and thermoelectric.

5 Energy decisions are influenced by economic, political, environmental, and social factors.

**5.1 Decisions concerning the use of energy resources are made at many levels.** Humans make individual, community, national, and international energy decisions. Each of these levels of decision making has some common and some unique aspects. Decisions made beyond the individual level often involve a formally established process of decision-making.

**5.2 Energy infrastructure has inertia.** The decisions that governments, corporations, and individuals made in the past have created today's energy infrastructure. The large amount of money, time, and technology invested in these systems makes changing the infrastructure difficult, but not impossible. The decisions of one generation both provide and limit the range of possibilities open to the future generations.

**5.3 Energy decisions can be made using a systems-based approach.** As individuals and societies make energy decisions, they can consider the costs and benefits of each decision. Some costs and benefits are more obvious than others. Identifying all costs and benefits requires a careful and informed systems-based approach to decision making.

**5.4 Energy decisions are influenced by economic factors.** Monetary costs of energy affect energy decision making at all levels. Energy exhibits characteristics of both a commodity and a differentiable product. Energy costs are often subject to market fluctuations, and energy choices made by individuals and societies affect these fluctuations. Cost differences also arise as a result of differences between energy sources and as a result of tax-based incentives and rebates.

6 The amount of energy used by human society depends on many factors.

**6.6 Behavior and design affect the amount of energy used by human society.** There are actions individuals and society can take to conserve energy. These actions might come in the form of changes in behavior or in changes to the design of technology and infrastructure. Some of these actions have more impact than others.

**6.8 Amount of energy used can be calculated and monitored.** An individual, organization, or government can monitor, measure, and control energy use in many ways. Understanding utility costs, knowing where consumer goods and food come from, and understanding energy efficiency as it relates to home, work, and transportation are essential to this process.