

Statistical Process Control (SPC) For Technicians

Presented by Southwest Center for Microsystems Education -SCME-January 2013

Our Presenters

Mary Jane (MJ) Willis Instructional Designer, SCME and retired Chair for the Manufacturing Technology Program – Central New Mexico Community College

uthwest Center for crosystems Education

What will we cover today?

- What SCME can do for you
- Process variation and the need to identify special cause variation
- Statistical Process Control (SPC)
- Statistical tools necessary to employ SPC
- Normal distribution and how it is significant in X-charts
- X-charts and how to create them
- Interpreting Control Charts by applying the Shewhart rules

Educational Materials

- SCME Learning Modules
 - Informational Units / lessons
 - Supporting activities
 - Supporting assessments
- ~40 Modules in the areas of
 - Safety
 - Microsystems Introduction
 - Microsystems Applications
 - Bio MEMS
 - Microsystems Fabrication
- 11 Instructional Kits
- All are available @ <u>scme-nm.org</u>

Professional Development

- 4 to 5-day workshops
- 2-day workshops
- 1-day workshop
- Conferences and conference workshops
- Create hubs at other colleges to teach our workshops
- Webinars
- SCME on YouTube (<u>https://www.youtube.com/user/scme2012</u>)

Why do we need (SPC) **Statistical Process Control?**

Quality Product

Location **Drug Coated Stent** Markers

Stent Delivery Catheter

Inflated Balloon with

Drug-eluting Stent by Taxus [Image provided by the FDA]

Biochip slide for testing protein arrays [Image courtesy of Argonne National Laboratories]

Statistical Process Control (SPC)

SPC is about "control".

Inherent or Common Cause Variation

Special Cause Variation

Special Cause Variability

Process Steps:

- 1. Silicon Nitride Deposition
- 2. Lithography for chamber
- 3. Lithography for sensing circuit
- 4. Metal deposition for circuit
- 5. Metal Removal
- 6. Etch reference chamber

Types of data

- Variable Data
 - Data Based upon measurements
 - Length, time, weight, temperature, pressure, film thickness
- Attribute Data
 - Data based upon counts (discrete)
 - Either there or not
 - Number of defects, acceptable or unacceptable

Type questions in your chat window

i

Public Page 1

Load (

Is the number of rejected wafers due to contamination variable data or attribute data?

Fit Page 👻

Variability

Photoresist Thickness

Variability

Photoresist Thickness

Variability

Photoresist Thickness

Controlled Variation

Uncontrolled Variation

Another Example

Process Temperature

Desired Variation

Can you think of a product where a certain amount of variation is acceptable?

Desired Variation

Can you think of a product where a certain amount of variation is acceptable?

Variation in Microsystems

Hinge System

Statistical Process Control and Variation

Communication is KEY!

Statistics for Statistical Process Control

- Statistics for Central Tendency
 - Sample Median
 - Sample Mean
- Statistics for Variability
 - Sample Range
 - Sample Variance
 - Sample Standard Deviation

Sample Median – Central Tendency

Sample Median

 Represents the data value that is "physically" in the middle of the sample set when arranged in numerical order.

Example:

- Given the data set: 2,4,1,5,3
- Order the data: 1,2,3,4,5

- Question: What is the Median?

Sample Median – Central Tendency

Sample Median

 Represents the data value that is "physically" in the middle of the sample set when arranged in numerical order.

Example:

- Given the data set: 2, 4, 1, 5, 3
- Order the data: 1,2,3,4,5

Example:

- Given the data set: 2, 4, 1, 5, 1, 3
- Order the data: 1, 1, 2, 3, 4, 5
- Median is the average of the 2 middle #'s: 2 and 3
- Median = 2.5

Sample Mean – Central Tendency

Mean

- Universal or Arithmetic Mean = μ
- Sample Mean = \overline{X}
- Mean of a collection of sample Means = $\overline{\overline{X}}$

Calculation of Mean

$$\mu = \frac{\Sigma x_n}{n}$$

5 Resist Thickness Values: 2.87, 2.99, 3.01, 3.15, 2.98 Microns

$$\mu = \overline{X} = \frac{2.87 + 2.99 + 3.01 + 3.15 + 2.98}{5} = 3.00 \text{ microns}$$
 Sample Mean

What is $\overline{\overline{X}}$?

+ × + + + + + + + + + + + + + + + + + +	+ • + + + + +	+ • + + + + +	+ • + + + + + • • • • • • • • • • • • •
Wafer #1	Wafer #2	Wafer #3	Wafer#4
3.23	3.43	3.74	2.52
3.09	4.29	2.01	2.49
4.82	1.95	1.58	1.68
4.16	4.55	4.89	4.18
2.11	2.37	1.38	1.61
Wafer #1 Sample Mean	Wafer #2 Sample Mean	Wafer #3 Sample Mean	Wafer #4 Sample Mean
$\overline{X} = 3.48$	X = 3.32	X = 2.72	X = 2.49
microns	microns	microns	microns

$$\overline{X} = 3.48 + 3.32 + 2.72 + 2.49 = 3.00$$
 microns

Sample Range Statistics for Variability

Statistics for Variability

- Sample Range
- Sample Variance
- Sample Standard Deviation

- Sample Range
 - The difference between the maximum value minus the minimum value.

2.87, 2.99, 3.01, 3.15, 2.98

Question – What is the Sample Range?

Sample Range Statistics for Variability

Statistics for Variability

- Sample Range
- Sample Variance
- Sample Standard Deviation

- Sample Range
 - The difference between the maximum value minus the minimum value.

2.87, 2.99, 3.01, 3.15, 2.98

3.15 – 2.87 = 0.28 Sample Range

Sample Variance Statistics for Variability

- Sample Variance
 - How far a set of numbers are spread out.

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{n - 1}$$

- 5 Resist Thickness Values: 2.87, 2.99, 3.01, 3.15, 2.98 microns
- Mean = 3.00 micros
- $\sigma^2 = 0.01$ Square Microns

Sample Standard Deviation Statistics for Variability

- Sample Standard Deviation
 - Measurement of how the data are distributed around the sample mean and within a range of values.

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^n (x_i - \mu)^2}{n - 1}}$$

- $-\sigma^2 = 0.01 \text{ micron}^2$
- $-\sigma$ = 0.1 micron

Let's Have Fun with Control Charts!

Normal Distribution Yes, it does matter

Axis scale gives number of standard deviations away from the mean (negative implies "below the mean")

Control Chart Basics

Control Chart Basics

- X axis is time based
- Monitors process to detect special cause variation and manage common cause variation
- Common Cause Variation
 - Due to room temperature change
 - Line personnel
- Special Cause Variation
 - Changes in process
 - Unexpected events
 - Change in vendors of a product ingredient
 - Leaks in a vacuum line

Control Chart Basics

Shewhart Rules aka Western Electric Rules (WECO)

8 Rules to Signal an Out of Control Process

Developed by a Western Electric Engineer – Walter Shewhart

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 3: Four out of five successive points outside $\mu \pm 1\sigma$ zone.

Rule 4: Eight or more successive numbers either strictly above or strictly below the mean (the center).

Rule 5: Six or more successive numbers showing a continuous increase or continuous decrease.

Rule 6: Fourteen or more successive numbers that oscillate in size (i.e. smaller, larger, smaller, larger)

Rule 7: Eight or more successive numbers that avoid $\mu \pm 1\sigma$ zone.

Rule 8: Fifteen successive points fall into $\mu \pm 1\sigma$ zone only, to either side of the centerline.

Rule 1: The existence of a number that is not in any of the zones labeled A, B, and C. (See special, encircled point above.) This would be a single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive numbers in a zone A or beyond (by beyond we mean away from the mean). This would be two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 3: Four out of five successive numbers in a zone B or beyond. This would be four out of five successive points outside $\mu \pm 1\sigma$ zone.

Rule 7: Eight or more successive numbers that avoid zone C.

Type I and Type II Errors

- 2 Types of Errors: Type I and Type II
- Type I False Alarm
 - Decision rules lead you to decide that special cause variation is present when in fact it is *not* present.
- Type II Miss
 - Decision rules lead you *not* to decide that special cause variation is present when in fact it is present.

Question: Let's test the rules

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 3: Four out of five successive points outside $\mu \pm 1\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 5: 6 or more successive numbers showing a continuous increase or continuous decrease.

Rule 6: 14 or more successive numbers that oscillate in size (i.e. smaller, larger, smaller, larger) **Rule 7:** 8 or more successive numbers that avoid $\mu \pm 1\sigma$ zone.

Rule 8: 15 successive points fall into $\mu \pm 1\sigma$ zone only, to either side of the centerline or target.

X-bar Chart - Furnace Temperature

Question: Let's test the rules

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 3: Four out of five successive points outside $\mu \pm 1\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 6: 14 or more successive numbers that oscillate in size (i.e. smaller, larger, smaller, larger)

Rule 7: 8 or more successive numbers that avoid $\mu \pm 1\sigma$ zone.

Rule 8: 15 successive points fall into $\mu \pm 1\sigma$ zone only, to either side of the centerline or target.

Process Changes - Shift

Process Changes - Trend

Trend – When the process mean begins to gradually move in one direction.

Process Changes - Cycle

Cycle – When the data begins to increase or decrease in a cyclical or repetitive manner.

Out of Control Action Plan - OCAP

You are a technician in the photolithography aisle of a local MEMS fabrication facility. After randomly testing several wafers from the last processing batch and plotting the data on a control chart, you identify an outof-control situation with resist thickness.

Out of Control Action Plan - OOCAP

Data Collection/Analysis Plan

Control Limits are NOT Specification Limits

- Control Chart Centerline
 - Derived from real-time process data
- Control Limits
 - Derived from real-time process data
- Specification Limits (Spec Limits)
 - Boundaries that a product is acceptable or *not* acceptable
- Just because a process is in statistical control does not mean it is always within spec and vise versa
- SPC has to do with process predictability
- Process Specification Limits have to do with the process capability
- General Rule: Do not put Specification Limits in a control chart!

EXAMPLE – SiO₂ Growth

- Silicon Dioxide Growth for a Sacrificial Layer on a MEMS device
- Specification states that the Average Run Temperature (X) should be 1000°C ± 10°C

Image courtesy of UNM MTTC

Management has determined that this process should be monitored for only the following 4 Shewhart Rules:

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: Two out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: 2 out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: 2 out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: 2 out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Rule 1: A single point outside the $\mu \pm 3\sigma$ zone.

Rule 2: 2 out of three successive points outside $\mu \pm 2\sigma$ zone.

Rule 4: 8 or more successive numbers either strictly above or strictly below the mean.

Other types of Charts

- \overline{X} and R chart
- X and s chart
- p-Chart and np-chart (defectives)
- U and c charts (defects)
- Individuals Chart
- Exponentially Weighted Moving Average (EWMA) Chart

X-bar R charts for Film Thickness

Summary

- SPC is a statistical scientific method that provides valuable information about a process
- They type of variation (common and special cause) should be understood and controlled.
- Statistical Concepts used in SPC
 - Sample median
 - Sample mean μ , \overline{X} , $\overline{\overline{X}}$
 - Sample range R
 - Sample variance σ^2
 - Sample standard deviation σ
- Most process data follows a Normal Distribution
- Shewhart or Western Electric Rules can be used to determine if a process goes out of control

Thank You For Joining Us

thwest Center for rosystems Education

Barb Lopez botero@unm.edu

Mary Jane (MJ) Willis mjwillis@comcast.net

How Can We Serve You Better?

Please take 1 minute to provide your feedback and suggestions

https://www.surveymonkey.com/s/J9TVRSZ

Webinar Resources

To access this webinar recording, slides, and handout, please visit

www.scme-nm.org

SCME Upcoming Webinars

February 28, 2013: Design of Experiments for Technicians

March 28, 2013: Problem-solving Tools Applied to Microfabrication

All Webinars on Thursday @ 1 PM ET

It was Fun!

Thank you for attending this SCME Webinar

Problem Solving for Technicians