

Blended & Flipped Learning: Theory Overview

Presented by MATEC NetWorks

Brought to you by ...

NetWorks is a part of MATEC, a member of Workforce Development in the Division of Academic and Student Affairs.

Advanced Technological Education program DUE 1104159

Our Presenters

Eva Erdosne TothAssistant Professor of Science Education

West Virginia University-Department of Curriculum and Instruction

Michael Lesiecki
Director

Maricopa Advanced Technology Education Center (MATEC)

Host: Laura Sanchez

Objectives

Objective 1: Develop a common understanding of *blended* learning terminology and technology.

Objective 2: Explore how to develop blended approaches to instruction.

Objective 3: Consider how to implement blended learning using active learning, such as *inquiry based* learning.

CYBERSECURITY STUDENTS DEPLOY ROUTING. SWITCHING, AND VIRTUAL NETWORKING. Source: www.atecenters.org

Objective 4: Apply instructional design principles to *blended learning*.

Blended Learning Poll

When you hear the term Blended Learning, you think:

- A. That is something I am doing right now.
- B. I probably incorporate blended learning without realizing it.
- C. I wish I understood blended learning concepts in more detail.
- D. My college does not provide resources in the area of blended learning.

Blended-What Do We Mean?

Blended learning is the thoughtful fusion of face-to-face and technology mediated learning experiences.

Basic Principle

- Oral and written communication, as well as interaction and engagement with many different types of resources
 - audio, video, graphics, simulations, immersive environments, etc.
 - blended into a unique learning experience congruent with the context
- Most importantly, blended learning is a fundamental redesign that transforms the structure of, and approach to, teaching and learning.

STUDENTS CREATE AND TEST ROBOT PROGRAMS WITHIN THE ROBOTICS LAB. Source: www.atecenters.org

Key Assumptions

- Thoughtful integration of face-to-face and technology mediated learning
- Fundamentally rethinking the course design to optimize student engagement
- Restructuring and replacing traditional class contact hours
- Optimizing technology resources; not-adding an additional expensive layer

Conventional Approach: Acid Base Titration

In Class

- Acid Base Reactions
- Calculation of Normality
- Concept of a Titration and End-Point

At Home

Home Work Problems

In Lab

Lab Exercise

Blended Approach: Acid Base Titration

In Class

• Examples of how Acid Base Titrations are used in the real world.

Online

- View Videos
- •http://www.youtube.com/watch?v=sFpFCPTDv2w&feature=related
- Practice Simulation
- •http://faculty.concordia.ca/bird/java/Titration/Titration_demo.html

In Class

• Practice Calculations in Small Groups

In Lab

Performance Assessment

View Acid Base Simulation

http://www.youtube.com/watch?v=B3Phu2HUENA&feature=g-upl

http://www.telestream.net/screen-flow/

Keys to Success with Blended Inquiry Learning

Eva Erdosne Toth, Ph.D.

Assistant Professor of Science Education
West Virginia University

Questions We Will Consider

 What ways can we optimize existing technology resources for learning?

- What is inquiry learning? What are "levels" of inquiry?
- What are instructional design decisions that complement interactive simulations & virtual laboratories?

WITH BRUSHES AND A VACUUM STUDENTS FINALIZE PARTS CREATED WITH 3-D TECHNOLOGIES THAT USE POWDER AND LASERS.

Source: www.atecenters.org

Consider this Common Classroom Lab

Give the materials at your station, use the following protocol (handout given) to perform DNA Gel Electrophoresis.

Example HOL: Gel Electrophoresis

Active Inquiry Poll

Is this activity Inquiry Learning?

- A. Yes, Because students are doing hands-on work.
- B. Yes, because students can check the quality of the outcome gel and learn how well you did the process.
- C. No, because the activity does not have a clearly stated research question to guide data collection and analysis.

What is Inquiry Learning?

"Inquiry learning is an approach that provides learners opportunities to actively develop skills that enable them to locate, gather, analyze, critique and apply information in a wide range of contexts as they develop understanding."

http://ictnz.com

What is Inquiry Learning?

Processes are:

- Set goals / ask questions to answer with data
- Design experiments / design ways to collet data
- Analyze data results and form explanations / rationales

BUT: How to implement in practice ?? -> levels of inquiry

What Are The Levels Of Inquiry?

Levels of Inquiry	Question given	Method given	Solution given
1. Confirmatory			
2. Structured			
3. Guided			
4. Open Inquiry			

Two Examples to Illustrate:

Inquiry support by existing software tools

 What learning goals would you be able to set for the use of this virtual laboratory/interactive simulation?

- How would you know whether you reached these learning goals?
 - What assessments would you be able to use?

Example 1: GSLC Gel Electrophoresis VRL

Funding was provided by a Howard Hughes Medical Institute Precollege Science Education Initiative for Biomedical Research Institutions Award

Some Images from this tool

Some Images from this tool

In the following video - Watch for...

What inquiry supports did this software tool provide?

 What learning goals would you be able to set for the use of this virtual laboratory/interactive simulation?

- How would you know whether you reached these learning goals?
 - What assessments would you be able to use?

Video

What Inquiry characteristics did you see here?

Levels of Inquiry	Question given	Method given	Solution given
1. Confirmatory			
2. Structured			
3. Guided			
4. Open Inquiry			

Example 2: Consider Another Way of Learning...

Video

What Inquiry characteristics did you see here?

Levels of Inquiry	Question given	Method given	Solution given
1. Confirmatory			
2. Structured			
3. Guided			
4. Open Inquiry			

Possible Structure For Blended Inquiry:

- Step One: Confirmatory inquiry with GSLC VRL
 - Can DNA fragments separated via gel electrophoresis?
 - Focus on reasons for processes
 - what is the mechanism of separation?
- Step Two: Use MyDNA to determine effect of CC & V
- Step Three: Use HOL to verify previous findings with VRL in handson setting
 - Focus on protocol precision, unbiased decision, avoiding contamination, evaluating output.

Next...

Let's examine a software tool in a different domain...

Example 3: RF Energy Simulation

Using a simulation, you will conduct six experiments to demonstrate different conditions for creation of a plasma.

SIMULATION

Demonstrate the relationship between pressure and energy needed to initialize a plasma

What did you see in the simulation?

What learning goals?

How can you structure?

What assessments?

CONCLUSION: Optimize Student Engagement

- Start with learning goals for the blended learning activity
- Select software tool for level of inquiry that is suitable for students
- Complement software features with instructional design
 - Set goals, add guiding questions
 - provide methods for data analysis
 - require student explanation and reasoning for solution
- Design assessments to determine whether you reached your learning goals – possible future topic for webinar?

Objectives

Objective 1: Develop a common understanding of *blended* learning terminology and technology.

Objective 2: Explore how to develop blended approaches to instruction.

Objective 3: Consider how to implement blended learning using active learning, such as *inquiry based* learning.

CYBERSECURITY STUDENTS DEPLOY ROUTING. SWITCHING, AND VIRTUAL NETWORKING. Source: www.atecenters.org

Objective 4: Apply instructional design principles to *blended learning*.

Short Survey

How Can We Better Serve You?

Whether you are joining us live or watching the recorded version of this webinar, please take 1 minute to provide your feedback and suggestions.

http://http://www.questionpro.com/t/ABkVkZJxRd

Thank You!

Thank you for attending the NetWorks webinar:

Blended and Flipped Learning: Theory Overview

Webinar Resources

To access this recording, slides, and handout visit

www.matecnetworks.org,

Keyword Search:

webinar blended and flipped learning theory overview