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Resolution of an optical
microscope is limited by the
diffraction limit:

o0 = 0.6A/nsina

Resolution could be improved
by reducing the wavelength (1)



The first electron microscope
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FIG. 1. Sketch by the author of the cathode-ray tube for testing —
the imaging properties of the nonuniform magnetic field of a RUSka and KnO” in the 19 31

short coil (Ruska, 1929; Ruska and Knoll, 1931) {footnote 1).



John Cowley with Sumio lijima

John Cowley with Sumio lijima at the controls of the JEM-100B (Tempe, 1974)



Layout of a Transmission Electron Microscope

Electron gun

Condenser aperture

Objective aperture Specimen port

Intermediate aperture

Fluorescence screen




Electron Matter Interactions

Electrons are easily
scattered.

Elastic scattering
— no change in energy.
— diffraction

Inelastic scattering

— transferring energy to
the sample.

— Used for
microanalysis:

backscattered
electrons

Auger
electrons

alasticall
scattere
slectrons

incident
electron
beam

A-rays
EDXS

secondary
electrons
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Electron imaging and diffraction
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Diffraction Contrast Imaging

Each diffracted spot
corresponds to a set of
lattice planes.

— Each spot contains
Information from the entire
Image (selected)

Bright-Field Imaging
— Use only the central spot.
Dark-Field Imaging

— Use one of the diffracted
spots

— Tilt the crystal to or near a
Bragg condition

Incident

beam

Crystal

BRIGHT FIELD
only the undiffracted
beam 000 is allowed
to.pass into the
imaging system.

(a)

Objective

aperture -

Objective
aperture

(b)

Incident

beam

Crystal

—

DARK FIELD
only one of the diffracted
beams is allowed to pass
into the imaging system.




DF Image of Olivine
dislocations, b=[100]

« Complex mixed
character

— Edge and screw
dislocations in a (010)
foil

— Slip system [100](010)

 Tilt boundaries along
(100)

— Edge dislocations with
u ~ [010]

— Slip system [100](001)




HRTEM (Phase Contrast)

Imaging down a zone axis

many diffracted beams.

— Use a large objective aperture.

— Image of the crystal lattice with
nearly atomic resolution

Phase contrast

— Contrast from phase differences
between the diffracted beams.

Dynamic diffraction

— Complex image contrast
variations with sample thickness
and defocus.




Phase contrast
Image alon [111]
showing damaged
regions that appear
lighter.

Zircon twin boundary




Zircon twin boundary

Higher magnification
Image of disordered
domains.
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Resolving power (A™)

Improving TEM resolution

DA Muller (2009)

Nature Materials
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For electron microscope the
(Scherzer) resolution is
given by

5 = 0.66).34C 1

Increase the
accelerating voltage
to reduce the
wavelength.
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Historical approach to resolution improvement

Use higher-voltages for
shorter wavelengths

Problems:
e Difficult to house a giant TEM
e Electron beam damage

Hitachi 1-MeV
FE-HRTEM

Tonomura, J. Electron Micr. 52, 11 (2003)




“World record” lattice fringe spacing

Lattice fringes at 1.0 MeV - beyond 0.5A
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from Kawasaki et al., Appl. Phys. Lett. 76, 1342 (2000)
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Improving TEM resolution
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Modern microscopes
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Aberration corrected
TEM and STEM



Spherical Aberration

Longitudinal and Transverse Spherical Aberration

Paraxial
Focus

(3)

Peripheral Circle
Rays of Least
Confusion

Transverss
= Spherical

Aberratior
(2)

l Longitudinal
Eli.?ﬁrl.e Figure 1 Spherical

Aberration



Aberration-correction in TEM

Design of the first successful
aberration-corrected 200-keV FEG-TEM SPECMEN

OBJECTIVE LENS

TRANSFER N
LENSES

1 HEXAPOLE
o
O
5 TRANSFER
& LENSES
5
(]
2. HEXAPOLE
GaAs showing individual Schematic drawing of aberration
atomic columns after correction device placed between
application of Cs correction. objective and diffraction lenses.

Atoms separated by 1.4 A from Haider, et al., Ultramicroscopy, 75, 53 (1998)



Aberration-correction in STEM

C.-corrected
Non-corrected l C.-effect

| |

Allowing use of large objective
aperture

» Smaller probe size

» Higher probe current

100 KV

(Krivanek)



Southwest Center for Aberration
Corrected Electron Microscopy

Building designed to meet environmental needs of aberration-corrected STEM/TEM

4-foot thick Isolated foundation for vibration isolation
Isolated power with no ground loops in floor or walls
Tight temperature control with minimal airflow

Space for four advanced
microscopes:

thwestern Center

ation Corrected




Jeol ARM200F

e Aberration-Corrected STEM for
Imaging and Spectrum Mapping
— Operates at 80, 120, and 200 kV.
— Field-emission electron gun
— Corrector: CEOS CESCOR
— STEM resolution @ 200 kV ~ 0.8A
@80kV ~1.2A

— JEOL EDX Detector (0.24 ster)
— Gatan Enfinium EELS spectrometer




Formation of STEM images

Aperture Br'lgh'l'-fleld STEM

Objective
Lens

Annular bright-field (ABF)

Large-angle BF (LABF)

Specimen

Low-angle ADF (LAADF)

Medium-angle ADF (MAADF)

High-angle ADF (HAADF)

ADF
Entrance

HAADF




STEM Imaging R E

e BF: Bright-field; DF: Dark-field
e ABF: annular-bright-field

e MAADF: medium-angle ¥
annular-DF

e HAADF: high-angle annular-DF
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% Annular-bright-field image and
/ line scan showing one-
monolayer-thick InN quantum
wells in GaN matrix.

Simultaneous HAADF and BF images of endotaxialiy anchored

PdZn alloy nanoparticle on ZnO nanowire. Courtesy of Jingyue Liu



Imaging of a LaMnO3/SrTiO3 interface
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chemical mapping Eoee e

STEM HAADF image of SrTiO3/LaMnO3
interface, used as survey image for EELS
Spectrum imaging



EELS Spectrum Imaging

STEM DF
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Chemical mapping across LaMnO,/SrTiO; interface.  Courtesy of Paolo Longo



NION UltraSTEM Monochromated STEM/EELS at
40/60/100kV

Prism Quads. EELS CCD
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25 March 2010 | www.nature.com/nature | £10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE
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ATOM-BY-ATOM ANALYSIS

Elements mapped by annular
dark field electron microscopy
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Boron Nitride phonons: hexagonal vs. cubic

Hexagonal BN
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(Oxford) and Keith Refson (Rutherford Appleton Labs) @
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FEI Titan ETEM

(S)TEM that operates at 80, 200, & 300 kV.

X-FEG:
Ultrahigh-brightness electron gun

Monochromator:
Energy resolution ~ 0.15 eV
Imaging Corrector: CEOS CETCOR - - - ‘.‘ e GEat g, S O
Information limit @ 300 kV < 0.9 A AR RS R R T L
@ 80kV ~1.9A “
(mono off) .055
@80kV ~1A ;

(mono on)

"5 S . " 5 " & & 5 0 ES . . B ES . . EEEE . . AW . & W

Analytical (S)TEM:
EDAX EDX Detector (0.13sr)
Gatan Imaging Filter/EELS spectrometer



Low Voltage Imaging

Detonation nanodiamond
particles < 3 nm imaged at
80kV using monochromator.
Reconstructed surfaces and
twins are visible at the atomic
level.



Environmental TEM

Environmental TEM:
Samples to be exposed to gaseous
environment.

TEM allows rapid imaging and movies
with atomic resolution.

In-house gas system allows precise
control and accurate mixing.

Heating and Cooling Holders: Sample
observation at temperatures up to
1100oC or down to -170 oC.




FEI Titan Krios

*FE|l Titan Krios with a Gatan K2

Summit single-electron
detector

2-3A resolution in biological
macromolecules

Single particle analysis of
proteins

e Cryo-electron tomography of
cell structures
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« Sample is frozen in aqueous solution
— native conditions

* Frozen state prevents dehydration in
MmICroscope vacuum

« Low temperature delays effects of radiation
damage

Nikolaus Grigorieff, ASU Cryo-EM Winter School
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Thank you for attending the
NACK Network & NCI-SW webinar
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