Confocal Microscopy

Dr. Fatma Pir Cakmak Physics, MIT May 7th, 2021

The Size of Things

1 billion meters

100 thousand meters

1 meter

1 / 100 thousand meters

1 / billion meters

History of Microscopes

History of Microscopes

•The first microscope was discovered around 1595 by Hans and Zacharias Janssen.

Zacharias Janssen (1580-1638)

•This microscope consisted of simply lenses adapted to the ends of the tube. It could enlarge objects 3 times-9 times.

History of Microscopes

•In 1665, Robert Hooke first used the term 'cell'. He called the holes in the bottle cork he looked at as 'cells'.

•According to the rumors, when he looked carefully at the cell mushroom, he remembered the rooms where the priests stayed and used this name

History of Microscopes

 Immediately after Hooke (circa 1683), Anton Van Leeuwenhoek, a Dutch amateur scientist, observed the first living cells under a microscope.

Modern Microscope

Modern Microscopy

Modern Microscope Component Configuration

Laser Scanning Confocal Microscopy

Principal Light Pathways in Confocal Microscopy

Widefield versus Point Scanning of Specimens

Widefield Microscopy

Confocal Microscopy

Diffusion of Biomolecules in Vesicle Coated RNA-Based Coacervates

Activities in cell can be compartmentalized by phase separation

- Aqueous phase separation observed in vivo
 - Cytoplasmic and nucleoplasmic
 - Membraneless organelles
 - Composed of RNA and protein
- Consequences
 - Biomolecule partitioning
 - Colocalization
 - Regulation of metabolism

Brangwynne et al. Nat Physics. 2015;11:899.

Diffusion of biomolecules indicates dynamic structure

 Rapid recovery of fluorescence is used to define liquid like droplets in vivo.

 Liquid-like properties of droplets could facilitate function

Lin, Yuan, et al. *Molecular cell*, 2015, 208-219. Weber, Stephanie C. et al. *Cell* 2012, 1188-1191.

PolyU/spermine coacervate system

- Low complexity RNA (polyU) and polyamines (spermine) formed coacervates.
- Centrifugation of samples resulted in a very small coalesced coacervate phase at the bottom.

Aumiller Jr, W. M., **Pir Cakmak, F.,** Davis, B. W., & Keating, C. D., *Langmuir*, *32*(39), 10042-10053.

Partitioning in coacervate

Concentration in the droplet can be calculated using microscopy

Biomolecule is labelled with fluorescence dye

Fluorescence intensity in the droplets are compared to calibration curves to obtain concentration value.

Calibration curves are made with know concentration values of labelled PEN molecule at the same conditions.

Partitioning in PolyU/spermine coacervate system

C_{coacervate} = Concentration in coacervate droplet C_{Supernatant} = Concentration in supernatant phase

Poly U15- 15 nucleotides composed of Uridine- Has the weakest binding with PolyU

Poly N15-15 nucleotides composed of random nucleotides

Poly A15- 15 nucleotides composed of Adenosine-Has strongest binding due to base pairing

Partitioning in PolyU/spermine coacervate system

C_{coacervate} = Concentration in coacervate droplet C_{Supernatant} = Concentration in supernatant phase

	Poly A15	Poly N15	Poly U15
Partitioning coefficient (K)	2800	62	44

Poly U15- 15 nucleotide composed of Uridine- Has the weakest binding with PolyU

Poly N15- 15 nucleotide composed of random nucleotides

Poly A15- 15 nucleotide composed of Adenosine- *Has strongest binding due to base pairing*

Partial Diffusion - What is Fluorescence Recovery After Photobleach (FRAP)?

Partial Droplet Bleaching

Entire Droplet Diffusion- FRAP

Entire Droplet Bleaching

22

FRAP Curve and equations

PENNSTATE

Halflife of recovery is the time where fluorescence has recovered to half of its maximum value after bleaching

Axelrod, Daniel, et al., Biophysical journal 16.9 (1976): 1055-1069.

Partial droplet bleaching RNA recovery in polyU/spermine coacervate

Partial droplet bleaching RNA recovery in polyU/spermine coacervate

Entire droplet bleaching RNA recovery in polyU/spermine coacervate

Entire droplet bleaching RNA recovery in polyU/spermine coacervate

Vesicle assembly around coacervate droplets

- Vesicles (90 nm) composed of five different phospholipids assembled at the interface in polyU/spermine coacervate system
- The PEGylated lipid was added to prevent the negatively charged vesicles from aggregating due to excess polycation (spermine)

Vesicle assembly around coacervate droplets

- FRAP showed no recovery after 15 min. indicating liposomes are immobile.
- DLS confirmed no lipid bilayer formation and vesicles remain same size.
 PENNSTATE

RNA diffusion in vesicle coated coacervate droplets

RNA diffusion into/out of the coacervate droplets wasn't impeded.

Conclusions

- Low complexity RNA and simple polyamines were used to form coacervates.
- Rapid exchange of oligonucleotides observed for partial droplet bleaching
- Entire droplet recovery depended on binding interactions and the supernatant phase concentration
- Interfacial accumulation of lipid vesicles did not inhibit exchange of biomolecules

Aumiller Jr, W. M., Pir Cakmak, F., Davis, B. W., & Keating, C. D., Langmuir, 32(39), 10042-10053.

Thank you!

Acknowledgments

Keating Group

- Dr. Christine Keating
- Dr. William Aumiller

PENNSTATE

32

• Dr. Brad Davis

Funding:

NA S

Exobiology

Program