

Building College-University Partnerships for Nanotechnology Workforce Development

Optical Lithography

Atilla Ozgur Cakmak, PhD Assistant Professor School of Engineering Grand Valley State University

Outline

- Where do we use optical lithography?
- Moore's Law

2

- Optical Lithography Steps
- Hands-on Demo with Rich Hill (ECC)
- Understanding optical lithography by numerically solving real life scenarios

3

What is lithography?

- A word of Ancient Greek origin.
- <u>λίθος</u> (lithos) <u>γράφειν</u> (graphia)
- Alois Senefelder used non-mixing oils on stone for mass production
- Andy Warhol comes to mind: In the art world, lithography is a two-century-old printing technology used to make prints and posters

What is lithography?

4

A Note on "Small"

Red Light Wavelength ~700 nanometer

Retrovirus ~70 nanometer

Patterns printed with lithography to make transistors are as small as 25 nm today, and still getting smaller!

PennState

6

In the semiconductor world, lithography is the printing technology used to **mass-produce chips** like microprocessors, memory and flash that are at the heart of electronic devices.

Around 30%-40% of the total cost during IC manufacturing Intel Transistor Leadership

Why size matters? 1961

2011

Lithography improvements must enable the printing of smaller features *without* significantly increasing the cost of making the chip. These chips cost the same!

Moore's Law

Frankly, I didn't expect to be so precise.

5MB being shipped in 1958

In 1965: "# of electrical components per chip will double every year"

1- https://b2bstorytelling.files.wordpress.com/2012/10/gordon_moore.jpg
2- http://www.telegraph.co.uk/technology/2016/02/25/end-of-moores-law-whats-next-could-be-more-exciting/

Moore's Law

1994: NTRS 1999: ITRS Accepted Moore's Law as industry standard

RIP

Here Lies

Optical

Lithography

Where are we heading? When will optical lithography die?

- 1979: 1µm
- 1985: 0.5µm
- 2006: 65nm
- X-ray litho + e-beam litho great resolution but cost is the issue⁵

11

Photoresist				
Si wafer				

Photoresist:

Applied to Si wafer through spin casting technique Baked on hot plate \rightarrow drives out solvents Liquid precursor \rightarrow uniform solid thin film

This was an example of positive lithography: What shows goes

- Quartz Photomask
- Develop soluble resist
- Look familiar?

PennState

A fantastic hands-on demo (<u>transferrable</u>) from Erie Community College Cleanrooms with Rich

13

Lithography Demo

- Substrate Preparation
 - Contamination free surface

- Improve the adhesion of PR to the surface + kill defects
 - Particulates
 - Organic films
 - Inorganic films
 - Adsorbed water

- Substrate Preparation
 - Dehydration baking
 - 200-400 °C up to 60 mins.
 - can get rid of organic contaminants, too.
 - can be omitted in some cases.

Substrate Preparation

17

Hexamthyl disilizane (HMDS) application

Step1: NH steals H from silanol Step2: Si bonds of HMDS get free

Step3: Si of HMDS bonds to 0 Step4: CH_3 makes very strong bonds with PR.

PennState

Lithography Demo

• Diffraction

20

Understanding optical lithography

• Diffraction: Fresnel-type

AND COMPUTING

Joseph von Fraunhofer

• Diffraction: Bessel Beams

Friedrich Wilhelm Bessel

Intensity Distributions

Lord Rayleigh

• Diffraction

As the wavelength shrinks down, the resolution gets better!

• Diffraction

25

• Imaging with Lens

Q1: What does NA correspond to? What is the effect of working with a higher NA?

Q2: How does the light source's wavelength affect the final pattern created?

History of optics in lithography

• Exposure

The exposure process takes an aerial image (a) and converts it into a latent image (b).

The Development

EYMOUR AND

AND COMPUTING

How does the developer-resist front propagate through time and space? The rate of development at a given point equal to the rate at which the interface moves down in z. In general we can define the path of development by tracing the position of the resist surface, which will always have a perpendicular direction to the surface. We should expect a path that starts out vertically, travels down through the resist thickness, then turns horizontally, stopping at the resist edge.

Over exposed and/or over developed

Over exposed and/or over developed

Ideal Exposure and Resolution

TABLE 1 Summary of the activities in Scenario 1 with the given parameter settings

Period (nm)	λ (nm)	NA	Exposure time (s)	Comments
600	193	0.5	2	Severe underexposure/underdevelopment
600	193	0.5	22.5	Ideal exposure time to obtain 300-nm spaces
300	193	0.5	22.5	Could not resolve (below limit)
300	193	0.96	22.5	Resolved: 146-nm-wide spaces
300	13	0.5	22.5	Resolved: 149-nm-wide spaces Notice the sharp slopes

Note: The rest of the parameters have default settings; students can hit "Set0" button to retrieve them.

Q3: Under the observations, comment on the famous formula of $R = k_1 \frac{\lambda}{NA}$ in the world of lithography.

• Imaging with Lens

Reticle

36

BARC •

AND COMPUTING

BARC and TARC	Air	n 1	= 0	Air	EI
	Resist D	n ₂	•	Resist	
	Substrate	n 3		Substrate	
	Sector Sector				
				_	
	1				
	-				
					and the state of the
GRAND VALLEY State University			Pro De	metoto	and the second sec
SEYMOUR AND ESTHER PADNOS COLLEGE OF ENGINEERING				instate	

Standing wave intensity in one micron of photoresist on a silicon substrate for an i-line exposure.

• BARC and TARC

Imaging of lines and spaces over reflective topography without BARC (left) showing reflective notching, and with BARC (right) showing the reflective notching effectively suppressed.

Road to Extreme UV •

Period (nm)	λ (nm)	Lamp intensity (mW cm ⁻²)	Exposure time (s)	q (duty cycle)	Comments
300	193	10	25.5	0.5	Ideal exposure time to obtain 150-nm spaces
300	157	1.66	25.5	0.5	Underexposure gives a width of 45 nm only
300	157	1.66	150	0.5	Ideal exposure time to obtain 150-nm spaces
300	157	1.66	150	0.05	Severe underexposure
300	13	2	110	0.05	Ideal exposure time to obtain 15-nm spaces

Summary of the activities in Scenario 2 with the given parameter settings TABLE 2

Note: The rest of the parameters have default settings; students can hit "Set0" button to retrieve them.

Table 2.	Table 2.1 Exemier fasers and then relative power		
Wavelength	Active gases	Relative power	
157 nm	Molecular Fluorine (F2)	10	
193 nm	Argon fluoride (ArF)	60	
248 nm	Krypton fluoride (KrF)	100	
308 nm	Xenon chloride (XeCl)	50	
351 nm	Xenon fluoride (XeF)	45	

=> very lossy

Did not pursue 157nm!

40

• Extreme UV Mirror Design

HR TEM reveals interfacial MoSi2

TEM of a Mo/Si EUV mirror, N=50, A=6.8 nn

Deposited by magnetron sputtering

• Road to Extreme UV

Under vacuum

• Extreme UV Mirror Design

TABLE 11Summary of the activities in Scenario 13 with thegiven parameter settings

N alternating pairs	Stack	Comments
50	Mo/Si	69.25% reflection
20	Mo/Si	31.49% reflection
50	Mo/SiO ₂	34.57% reflection, peak shifted to 13.18 nm

Note: High *Z* atom film thickness: 2.76 nm; low *Z* atom film thickness: 4.14 nm, normal incidence angle.

Reflection_UV.m

• Dill Parameters

TABLE 4 Summary of the activities in Scenario 4 with the given parameter settings

Dill parameter <i>C</i> (cm ² mJ ⁻¹)	Exposure time (s)	Comments
0.25	25.5	Ideal exposure time to obtain 150-nm spaces
0.1	25.5	Underexposure gives a width of 112 nm only
0.1	62	Ideal exposure time to obtain 150-nm spaces

Note: The rest of the parameters have default settings; students can hit "Set0" button to retrieve them.

NACK

 CH_3

 CH_3

 $+ CO_2$

+ $CH_2 = C$

PennState

Understanding optical lithography

Contrast

TABLE 5Summary of the activities in Scenario 5 with thegiven parameter settings

45

Polymer chain length (<i>n</i>)	Exposure time (s)	Comments	
2	25.5	156-nm width Sidewall angle = 57°	
2	30	161-nm width Sidewall angle = 56°	
2	35	166-nm width Sidewall angle = 56°	
30	25.5	149-nm width Sidewall angle = 64°	$-CH_2-CH$ $ H^+$
30	30	154-nm width Sidewall angle = 67°	Δ
30	35	159-nm width Sidewall angle = 65°	O CH_3 CH_3 CH_3 CH_3 CH_3 t-BOC blocking t-BOC blocking t

Note: The rest of the parameters have default settings; students can hit "Set0" button to retrieve them.

• Depth of Focus

46

• Depth of Focus

• Immersion Lithography

https://www.youtube.com/watch?v=lt0N9t-j34k

• Immersion Lithography

49

to development

• Immersion Lithography

50

Gary Stix Scientific American, vol. 293 pp. 64-67, 2005.

- A few words on lenses and refraction: Immersion Lithography
 - Water has a refractive index of 1.44, new liquids should be higher than 1.6
 - Should not have a large dn/dT
 - Should have at least 90% transparency
 - Should have a viscosity close to water
 - Should not wet the surface of $PR \rightarrow critical$ for lens movement
 - Should not be soluble in air
 - Minimum interaction with PR
 - Should not be corrosive
 - Should be safe to handle, should be stable under UV
 - Supply and Cost

• Immersion Lithography

51

Air bubbles

A DESCRIPTION OF THE REAL PROPERTY OF THE REAL PROP	and in the subscription of
and the second s	-
	Cartes
	Supplementary in which the real of the local division of the local
	other Designation of the local division in which the local division in the local divisio
A COLUMN TWO IS NOT	and and
and the second states where the second	
No. of Concession, Name	STATUS AND ADDRESS OF TAXABLE PARTY.
ACCESSION OF A REAL PROPERTY OF	State of Lot of
and the second s	And in case of the local division of the loc
	Statements of the second second
	And in case of the local division of the loc
Print of the Party	of the local division of the local divisiono

Water marks and drying stains (Try to make super-hydrophilic surface)

Particles from water

