

Building College-University Partnerships for Nanotechnology Workforce Development

Organic Solar Cells

Outline

- Introduction to solar energy conversion
- Overview of technology and materials
- Processing sequence
- Characterization of devices
- Trends for the future

MRS Bulletin 2005, 30(6), 412.

MATERIAL MATTERS

Future Global Energy Prosperity: The Terawatt Challenge

Richard E. Smalley

"To give all 10 billion people on the planet the level of energy prosperity we in the developed world are used to, a couple of kilowatt-hours per person, we would need to generate 60 terawatts around the planet – the equivalent of 900 million barrels of oil per day."

Top 10 World Issues

- 1. Energy
- 2. Water
- 3. Food
- 4. Environment
- 5. Poverty
- 6. Terrorism and war

7. Disease

- 8. Education
- 9. Democracy
- 10. Population

"When we look at a prioritized list of the top 10 problems, with energy at the top, we can see how energy is the key to solving all of the rest of the problems – from water to population."

-Richard E. Smalley Nobel Laureate in Chemistry (1996, for the discovery of fullerenes)

How do we make TW of power?

Fossil Fuels (non-renewable)

Oil Coal Natural Gas

Renewables

Solar Wind Hydroelectric Sustainable Biomass

Nuclear (non-renewable)

Solar Radiation

1366 W/m²: Power density of the sunlight striking the Earth's outer atmosphere. Known as the solar constant.

1000 W/m²: Power at Earth's surface on a clear day with the sun directly overhead.

300 W/m²: Approximate amount available on Earth when averaged over 24 hours.
153,000 TW ...way more

than enough!

The Solar Spectrum

Using the Sun's Energy

- The basic processes in converting the sun's energy into usable electricity are:
- 1. Absorption of light
- 2. Creation of free charge carriers: e- and h+
- 3. Transport and collection of charge
- 4. Using the electrical energy
 - To power a device (e.g., a calculator)
 - To recharge a battery (energy storage)

Power Conversion Efficiency

- Abbreviated PCE
- Ratio of power density obtained from solar cell to the incident solar power density
- The incident light is often produced by a solar simulator and P_{in} is commonly fixed at 100 mW/cm²

Outline

- Introduction to solar energy conversion
- Overview of technology and materials
- Processing sequence
- Characterization of devices
- Trends for the future

Solar Cell Technologies

- 1st Generation: Crystalline silicon
- 2nd Generation: amorphous silicon, CdTe, CIGS (thin film technologies)
- 3rd Generation: organic and dye sensitized

First Generation Solar Cell

- One p-n junction
- Made of very high purity silicon
- Can be single crystal or multicrystalline

Principle of Operation

- Light absorption creates free charge carriers (electrons and holes)
- 2. The p-n junction directs current to flow in only one direction
- 3. Charge carriers are collected at the electrodes, which allow current to flow through an external circuit

First Generation Solar Cell

First Generation Solar Cell

Advantages

- High efficiency
- Long lifetime

<u>Disadvantages</u>

- Expensive materials
- Expensive production processes
- Rigid structures
- Fragile

The aim of organic solar cell research is to overcome the disadvantages by using less expensive materials and less expensive production processes.

Organic Solar Cells

Organic solar cells are sometimes called plastic solar cells

Each device contains many layers

The active layer usually contains a mixture of two components: electron donor and electron acceptor

They are made up of materials such as: conductive polymers, small molecule semiconductors

Organic Solar Cells: Materials

Active Layer Donor Poly(3-hexylthiophene) (P3HT)

Active Layer Acceptor Fullerene Derivative (PCBM)

Size: 1-2 nm

Hole Transport Layer **PEDOT:PSS**

Aqueous colloidal suspension with 20-80 nm particles

Active Layer Morphology

Light absorption creates excited species called excitons

Excitons must dissociate at donor-acceptor interface in order to create free charge carriers

Excitons have a limited lifetime and a limited diffusion distance (L_D)

 L_D is on the order of nanometers

Excitons are lost if they do not dissociate into free electrons and holes

Therefore, donor and acceptor materials must be organized into nanoscale domains

Outline

- Introduction to solar energy conversion
- Overview of technology and materials
- Processing sequence
- Characterization of devices
- Trends for the future

Processing of Lab-Scale Devices

- Typically, lab-scale organic solar cells are small in area (< 1 cm²)
- Example: If a device is 3 mm x 3 mm, the active area is 9 mm² or 0.09 cm²
- Small devices are easy to fabricate and handle in the lab.
- Many small devices can be made on one substrate (for optimization experiments).
- Active area is defined by where the anode and cathode overlap to make a complete sandwich structure.

Example of Device Layout

Example: 4 independent solar cells on one substrate

One Device (top view)

Processing Steps

Step	Description
Pattern ITO	Photolithography and Wet Etch
Clean ITO	Oxygen Plasma or UV-Ozone
Cast PEDOT:PSS	Spin Coater
Cure PEDOT:PSS HTL	Oven or Hot Plate
Cast P3HT:PCBM Active Layer	Spin Coater
Thermal Annealing	On 150 C Hot Plate
Evaporate LiF/AI Cathode	Metal Evaporator
Clean Anode Contact	Q-tip and Toluene
I-V Characterization	Solar Simulator

Processing Steps

© 2017 The Pennsylvania State University

Organic Solar Cells 22

Outline

- Introduction to solar energy conversion
- Overview of technology and materials
- Processing sequence
- Characterization of devices
- Trends for the future

Power Conversion Efficiency

- Abbreviated PCE
- Ratio of power density obtained from solar cell to the incident solar power density
- The incident light is often produced by a solar simulator and P_{in} is commonly fixed at 100 mW/cm²

www.nano4me.org

Organic Solar Cells 25

Solar Simulators

- •Xenon arc lamp with filters to approximate AM1.5
- Spectral mis-match factors
- •Calibration of light intensity (P_{in})
- Temperature control of the sample

Outline

- Introduction to solar energy conversion
- Overview of technology and materials
- Processing sequence
- Characterization of devices
- Trends for the future

Alternative Processing Techniques

- Roll-to-roll printing
- Ink-jet printing
- Screen printing
- Doctor blading
- Vacuum-based deposition

Organic Solar Cells

Advantages

- Materials are amenable to low-cost processing
- Polymeric materials can be tailored to meet specifications (e.g., band gap, solubility)

Disadvantages

- Less efficient (so far) than other technologies
- Long term stability needs to be proven
- Viewed as cutting edge, but risky, technology

Conclusions

- Solving issues related to energy production, storage, and distribution will take a concerted effort.
- Plenty of challenges for all areas of science and technology.
- Nanotechnology is poised to make major contributions to the energy sector.
- Organic solar cells show promise for lowcost production (\$/Watt).