

Building College-University
Partnerships for Nanotechnology
Workforce Development

Plasma Removal Process

Outline

- Introduction
- Models to understand the plasma process
- Chemistry
- Analyzing recipe parameters, and the resultant etch profiles
- Endpoint

Sidewall Passivation

- Sidewall passivation can be used in an etch process to control sidewall profile
- A film forms on the sidewalls, preventing the material from being etched isotropically
- The film is actually a polymer formed from the process gases and the photoresist layer on the substrate
- The polymers are basically combinations of carbon and hydrogen. May contain oxygen and nitrogen and other etch byproducts. Polymer chemistry depends on process conditions.
- Specific gases can be added to the recipe to insure passivation film formation

Etch Profile with Sidewall Passivation

Public Domain: Image Generated by CNEU Staff for free use

Radicals: reactive etching species

- Reaction Products: volatile etch products
- Film formers: provide sidewall passivation, photoresist can be a large contributor
 - Positive ions: provide physical bombardment on surface, breaking surface film formers at bottom, physically etching and providing energy to help drive chemical reactions

Sidewall Passivation

- Polymers coat the sidewalls and act as a "pseudo-mask" for protection from chemical attack
- lons, for the most part, strike vertically and remove polymer buildup at the bottom of the etch
- The sidewall polymers are removed by using O₂ plasma at 500-750mT
 - This exposure uses a lot of chemistry and little bombardment

Outline

- Introduction
- Models to understand the plasma process
- Chemistry
- Analyzing recipe parameters, and the resultant etch profiles
- Endpoint

Controlling the Etch Process by Balancing Chemistry and Bombardment

- In dry etch processes choosing the correct chemistries can greatly increase the etch rate
- Increasing MFP of the plasma (decreasing the pressure) also increases the etch rate, this will aid uniformity
- Combining chemistry and bombardment will produce an etch rate that is greater than either contributor alone
- Combining chemistry and bombardment allows the profile to be "tuned" between isotropic and anisotropic
- The etch profile can also be enhanced with side wall passivation

Example Sidewall Chemistries

Material	Chemistry	Volatile Etch Product	Sidewall Material
Oxide Etch	$SiO_2 + CF_4 + CHF_3 + Ar \rightarrow$	SiF, SiOF, SiF ₄ , SiH ₄ ↑	Si, C, CH _× , F↓
Poly Si Etch	Si + HBr + Cl ₂ →	SiBr _x ↑ SiCl _x	Si,Br,C,Cl ↓
Al Etch	Al + BCl ₃ + Cl ₂ + N ₂ \rightarrow	AICI ₃ ↑	AI,B,C,N,CI↓

Some etching Gases

Perfluoro-propane

Trifluoro-methane

trifluoro-methane

Sulfur Hexafluoride

Tetrafluoride State University

Bromo-

Nitrogen

Silicon

Trifluoride

Chemical

Tetrachloride

Name

Silicon

Boron-

trichloride

Hydrogen

Hydrogen

Bromide

Helium

Nitrogen

Oxygen

Plasma Removal Process 9

Chloride

Chlorine

 Cl_2

HCI

HBr

He

 N_2

Formula	Common Name	Chemical Name	Formula			
CF ₄	Freon 14	Tetrafluoro-methane	SiCl ₄			
C ₂ F ₆	Freon 116	Perfluoro-ethane	BCl ₃			

Freon 218

Freon 23

Freon

13B1

 C_3F_8

CHF₃

CF₃Br

SF₆

 NF_3

SiF₄

Some Materials and Selected Etchants

Material	Chemistry	Material	Chemistry
PolySilicon	Cl ₂ or BCl ₃ /CCl ₄ HBr /CF ₄ /CHCl ₃ /CHF ₃	WSi ₂ ,TiSi ₂ ,CoSi ₂	CCI ₂ F ₃
Aluminum	Cl ₂ BCl ₃ + passivating gases SiCl ₄	Single crystal Si	Cl ₂ or BCl ₃ + passivating gases
AlSi(1%)-Cu(0.5%)	same as Al	SiO ₂ (BPSG)	CCl ₂ F ₂ ,CF ₄ ,C ₂ F ₆ , C ₃ F ₈
Al-Cu(2%)	BCl ₃ /Cl ₂ /CHF ₃	Si3N4	CCI ₂ F ₂ CHF ₃
Tungsten	SF ₆ /Cl ₂ /CCl ₄	GaAs	CCl ₂ F ₂
TiVV	SF ₆ /Cl ₂ /O ₂		

Outline

- Introduction
- Models to understand the plasma process
- Chemistry
- Analyzing recipe parameters and the resultant etch profiles
- Endpoint

The "Egg" Chart

- This analytical model is a graphical representation of various process parameters. The Y axis represents bombardment energy, the X axis represents chemical energy, and the "dog leg" boundary represents polymer formation.
- For an ideal anisotropic etch, the required parameter zone resembles an "egg" in the middle of the chart
- This chart shows the combined effects of chemistry, bombardment, and polymerization (C*B+P) to predict sidewall profiles
- There are also other factors that determine the etch profile that are not included in this exercise. These parameters will be discussed after this first iteration analysis.

The "Egg" Chart

- A chart like this can be found and/or generated for any dry etchable material
- Due to its wide use in micro and nanofabrication, we will analyze the egg chart for SiO₂
- Naturally this chart is not "exact", but can be used as a starting point for building a etch recipe.

Oxide Egg Chart Considerations

- F/C Ratio- the ratio of fluorine to carbon etching species
- Increasing DC bias, increases bombardment
- The addition of H₂ to the chamber increases polymerization
- The addition of O₂ to the chamber increases free fluorine
- Aspect Ratio- the ratio of depth to width for a small gap, trench, or hole

The Ideal Profile

- To be "in the egg" is to achieve the ideal anisotropic etch
 - The ideal F/C ratio is approximately 2
 - An equal mix of hydrogen and oxygen to balance polymerization and etch
 - DC bias level that provides just enough bombardment

The Ideal Profile

Sidewall Profile Two

- Low DC bias little/no bombardment
- No H₂ no polymerization
- A lot of O₂ can increase etching
- F/C ratio = 4, SiF₄ is formed
- Aspect ratio < 1, an isotropic etch profile

Sidewall Profile Two

Sidewall Profile Three

- Low DC bias no bombardment
- A lot of H₂ a lot of polymerization
- No O₂ no etch
- $F/C = \frac{1}{3}$, SiF_4 is not formed

Sidewall Profile Three

Sidewall Profile Four

- High DC bias high bombardment
- No H₂ no polymerization
- A lot of O₂ high etch
- F/C ratio = 4, SiF₄ is formed
- Aspect ratio >1, a dry etch profile

Sidewall Profile Four

Sharp angles due to high bombardment with no polymerization

Sidewall Profile Five

- High DC bias high bombardment
- A lot of H₂ a lot of polymerization
- No O₂ no etch
- F/C ratio = $^{1}/_{5}$, SiF₄ is not formed
- Aspect ratio > 1, Dry etch profile with undesirable features

Sidewall Profile Five

Sidewall Profile Six

- Medium DC bias medium bombardment
- No H₂ no polymerization
- A lot of O₂ high etch
- F/C = 4, SiF₄ is formed
- Aspect ratio < 1, a wet etch profile

Sidewall Profile Six

Wider and deeper than profile one due to increased bombardment

Sidewall Profile Seven

- Medium DC bias medium bombardment
- A lot of H₂ a lot of polymerization
- No O₂ no etch
- F/C ratio = ¼, SiF₄ is not formed
- Aspect ratio > 1, Dry etch profile with undesirable features

Sidewall Profile Seven

Less bombardment than profile four

Considerations Beyond the Egg Chart

- The "egg chart" is a useful first approximation to define some process parameters, but it does not cover some important considerations.
- We will discuss 4 additional considerations:
 - Residence time
 - Microloading
 - Proximity effect
 - Post etch evaluation

Residence Time

- The average time gas is present in the chamber (seconds)
- The residence time is a balance of the pressure, input gas flow, and the pump efficiency
- Naturally the residence time will impact the etch process, because etch chemistry and byproducts are constantly being pumped away at a certain rate

Microloading

- The change in local etch rate relative to the whole area of material being etched
 - A large area will load the etching process with volatile etch products, slowing the etch down in that area while a smaller etch area proceeds at a faster rate
- Etch rates change according to pattern and exposed area

Microloading

Proximity Effect- Etch Rate Based on Feature Size

"Crowded"harder to remove byproducts, slower etch rate

Easier to remove byproducts, faster etch rate

Etch Evaluation

- Process quality parameters:
 - Etch rate, selectivity, uniformity
 - Sidewall Profile
 - Loss or gain of critical dimensions
 - Corrosion (in metal etch)
 - Reproducibility

Outline

- Introduction
- Models to understand the plasma process
- Chemistry
- Analyzing recipe parameters, and the resultant etch profiles
- Endpoint

Endpoint Detection

- General term describing when an etch process has finished
- Two common methods of detection
 - Optical emission
 - Mass spectroscopy

Optical Emission

- Each volatile etch product emits a specific wavelength
- The wavelength intensity shows the relative amounts of products being formed
- A decrease in intensity corresponds to a decrease in etch products.

RIE With Optical Endpoint Detector

Endpoint Detector

Oxford Instruments Plasmalab System 100

Optical Emission

Material to be etched	Etchant Gases	Emitting Species	λ(nm)
Silicon	CF ₄ /O ₂ ; SF	F(product)	704
	CF ₄ /O ₂ ; SF	SiF(product)	440, 777
	Cl_2	SiCI(product)	287
SiO ₂	CHF ₃	CO(product)	484
Si ₃ N ₄	CF ₄ /O ₂	N ₂ (product)	337
	CF ₄ /O ₂	CN(product)	387
	CF ₄ /O ₂	N(product)	674
	CF ₄ /O ₂	F(etchant)	704
Al	Cl ₂ ; BCl ₃	Al(product)	391, 394, 396
	Cl ₂ ; BCl ₃	AICI(product)	261
Resist	O_2	O(etchant)	777, 843
	O_2	CO(product)	484
	O_2	OH(product)	309
	O_2	H(product)	656

Example Graph of Optical Endpoint Detection

Mass Spectroscopy

- This method of endpoint detection measures the mass/charge ratio of the etch products
- As the mass/charge ratio peak declines, the products being generated by the etch decline due to the material being etched away
- A residual gas analyzer is a mass spectrometer

Mass Spectrometer Schematic

Example Mass Spectra: Benzyl Alcohol

