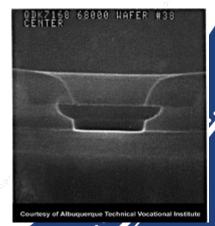


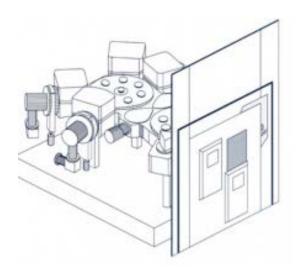
Building College-University Partnerships for Nanotechnology Workforce Development

Plasma Technology, an enabling tool for modern manufacturing


Terence Kuzma

a) Directional Etching

b) Isotropic Etching



Today's Outline

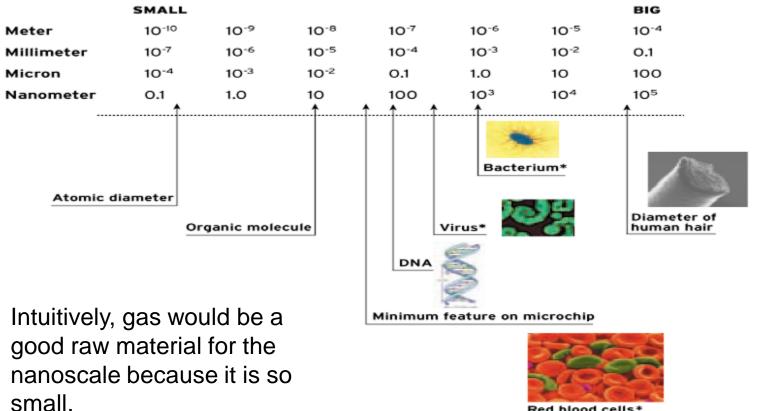
- Why/what is nanomanufacturing
- Plasma technology, describing the tool
- Summary that will change your life



Why nanotechnology is important

What is Nanofabrication?

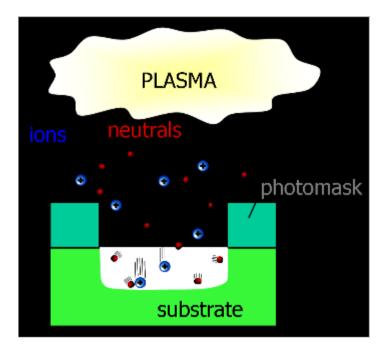
 Nanomanufacturing is the process of controlling materials on the nanoscale to make products better. Generally this requires a very precise and repeatable process. Plasma technology fits these constraints.



Why nanotechnology is important

NANOSTRUCTURE SIZE SCALES

Red blood cells*


* © Dennis Kunkel

Today's Outline

- Why/what is nanomanufacturing
- Plasma technology, describing the tool
- Summary that will change your life

PennState

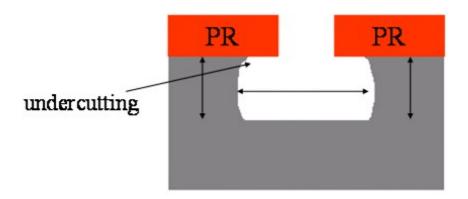
Plasma technology, describing the tool

- Plasma technology can make products better, and sometimes unique products.
 - Plasma for our discussion is electrically excited gas under a vacuum.
 - Generally plasma is "simple", lacks uncontrolled variables.
 - Because plasma technology is controlled, it can be repeatable. This increases yield. \$\$\$
 - Often plasma technology can be utilized in an assembly line. This makes products cheaper, and widespread.
 - It can be used to create films or particles.
 - It can be used to modify surfaces.
 - ***It can be used to remove material, and to produce patterns.***
 - No cell phones without plasma technology, no internet, no digital for the masses.

Etch technology, describing the tool

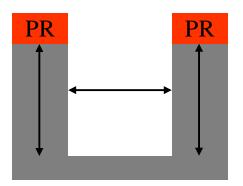
- This presentation will focus on etching, selective material removal to pattern a surface.
- Electrically excited gas is a plasma, and it has two major energy factors to accomplish manufacturing: chemical energy (C) and kinetic energy (B). These two forms of energy act synergistically. C*B
- We can "chisel out" features as big as a virus
- Two basic types of etch profiles
 - 1. Wet Etch Just like an "acid"
 - 2. Dry Etch "Like crafty sand blasting", this is our topic but we will contrast wet etch first and see why it is really not "nano".

Etch technology, describing the tool


- Etch = Selective removal of material... Can be liquid or gas byproduct
- Two basic types of etch profiles. Divide/conquer
 - Isotropic = Bowed sidewalls, where the lateral etch rate matches the vertical rate. (Wet, or plasma)
 - Anisotropic = Relatively straight sidewalls, where the vertical etch can exceed the lateral etch rate. (Plasma only)

Isotropic Vs Anisotropic

- Isotropic
 - Characteristic wet etch profile, "energy" is equal in all directions, directed at depth and width.
 - Wet chemistries tend to undercut, producing this profile.



Anisotropic Vs Isotropic

- Anisotropic
 - Characteristic dry (plasma) etch profile, a function of pressure and sidewallpassivation
 - Energy greater in depth than width!

Etch Profiles

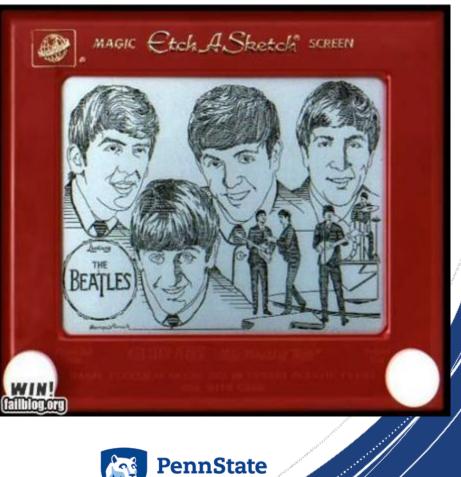
- Wet Chemical Etching: isotropic
 - Undercut profile, increased real estate used, loss of dimensional control

- Plasma Etching: anisotropic or directional
 - vertical sidewalls

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Wet Etch (isotropic)

- Positive Characteristics
 - Generically, dipping a masked substrate in an "acid". Chemistry does the work.
 - Low cost
 - Well understood
 - Possible to do many substrates at once
- Negative Characteristics
 - <u>Only isotropic profiles</u> limited application
 - Large amounts of waste
 - Solutions change, lacks control, repeatability
 - Temperature dependent
 - Not for smaller features, due to surface tension (<u>usually less than 3</u> <u>microns</u>)
 - Not that interesting for PowerPoint....., but it shows we need plasma etching in the gas state.

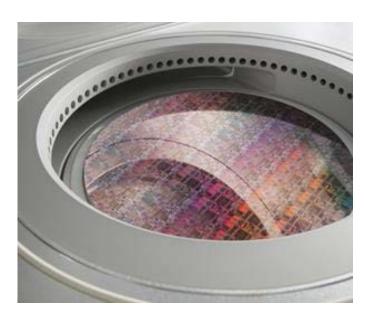


Bonus Poll, The Beatles

- 1962 the drummer _ _ _ joins the Fab 4.
- There are two knobs on this etch-a-sketch
 - Left and right C
 - <u>Up and down</u> B
- Energy vectors

 \leftrightarrow

- Chemical (L/R) chem reactions
- Bombardment (U/D) ions
- "Kinda" for simplicity first order



Today's Outline

- Why/what is nanomanufacturing
- Plasma technology, describing the tool
- Summary that will change your life

Plasma technology, describing the tool **Plasma Overview**

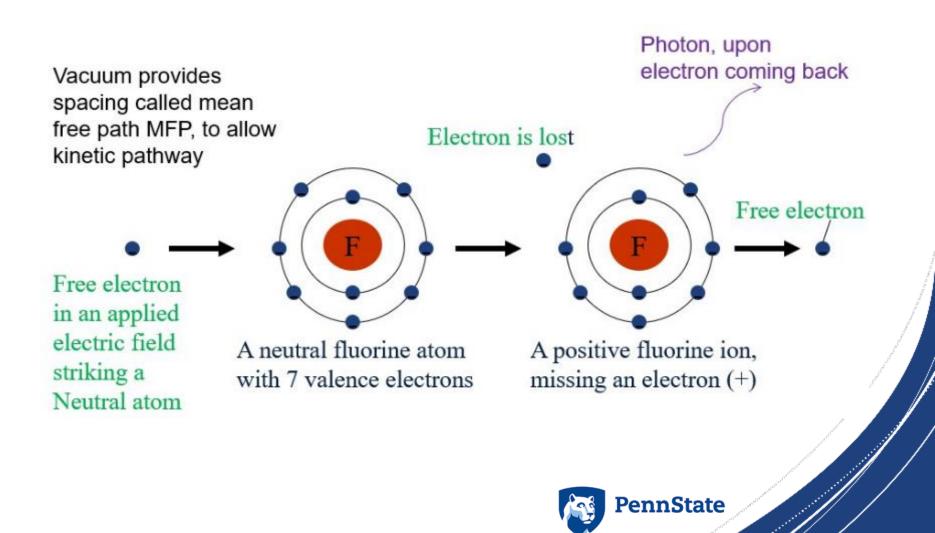
- Fourth state of matter
- A good example of a "plasma system" that you are familiar with is the fluorescent lights in this room.
- What do you know about the fluorescent lights?
 - Under vacuum
 - Used electrical bias
 - Different colors, white, pink, blue.

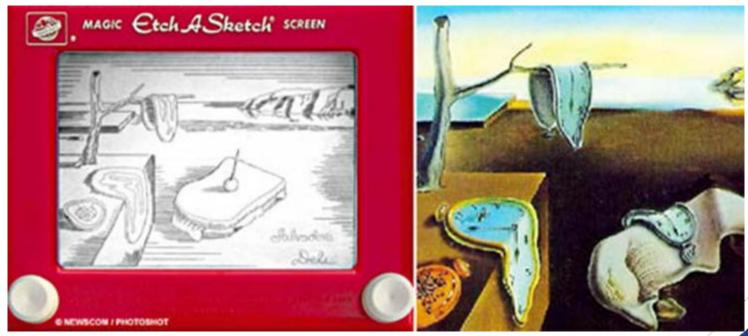
Plasma technology, describing the tool **Plasma Overview**

- Vacuum = clean, new gas in, used gas out
 - Well controlled purity 99.9997% fresh gas
 - Gas glows a specific color remember orbital excitation quantum effects.
 - In this man made environment, unique chemical reactions can be repeatable.
 - Ionization is primarily controlled through the spacing of the atoms in the vacuum chamber. Collisions cause electron disassociation.

Plasma technology, describing the tool **Plasma Overview**

- A dry plasma etch contains:
 - Radical that chemically react with the wafer and selectively remove material
 - Ions that remove material through physical bombardment (no selectivity) and alter uniformity
 - Neutrals
 - Electrons aid in sustaining the plasma
 - These different "energies" can modify a surface
 - Again, etch, deposition, and surface modification

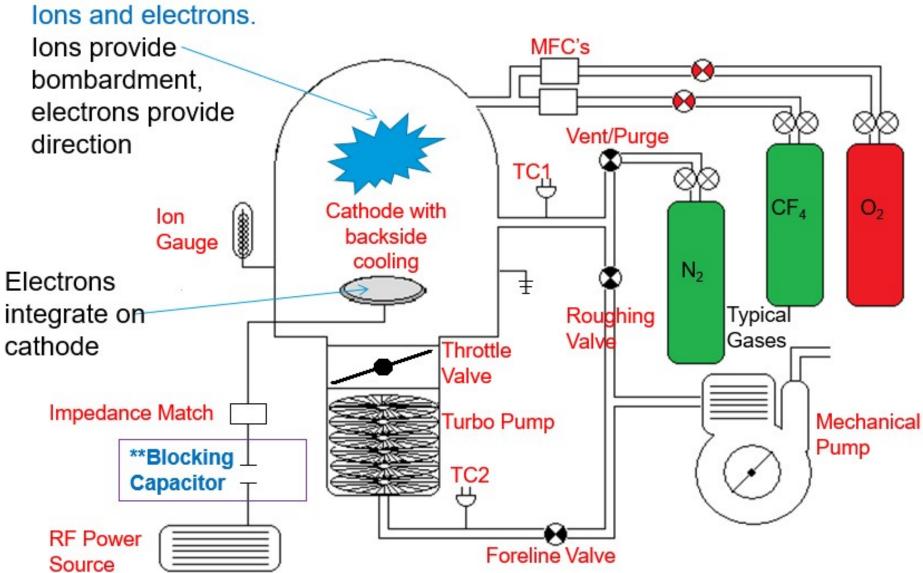



Gas plasmas are a function of ionization

Plasma technology, describing the tool

- Q. Why is this important?
- A. To provide KE and Chemical activity at the surface. KE=B, and Chemistry=C
- C*B = unique energy, custom width verses depth for unique profiles

PennState



A Plasm Etch System

- <u>Drawing</u> a typical system to integrate concepts listed below:
 - lons want to gain negative charge to become neutral.
 - We can capture electrons by isolating an area with a CAPACITOR. Electrons = negative DC.
 - Pressure controls mean free path
 - The RF electrical power is connected to the cathode through a capacitor. This provides AC power and blocks the DC electrons from bleeding away.

Reactive Ion Etch

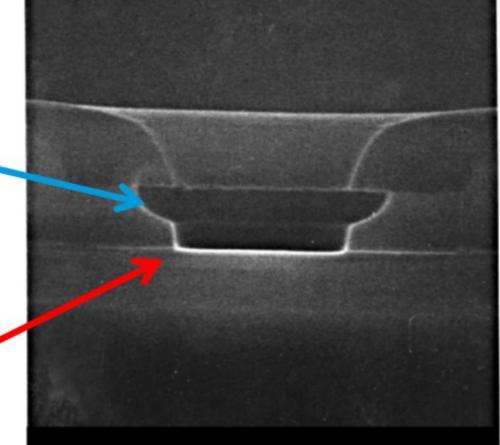
NSF DUE - 1700630

The "Wine Glass" Etch Profile

WAFER

68000

Building College-University Partnerships for Nanotechnology Workforce Development


#38

Pressure increased, isotropic

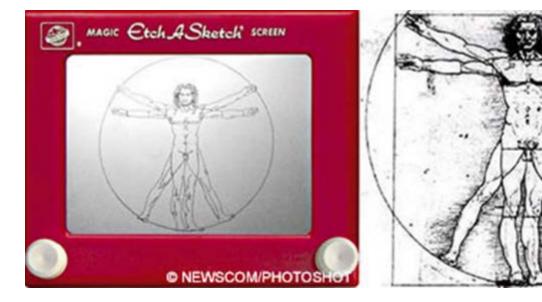
Pressure reduced, anisotropic

Gives us the ability to repeatable create 3D geometries as big as a virus!

Courtesy of Albuquerque Technical Vocational Institute

Today's Outline

- Why/what is nanomanufacturing
- Plasma technology, describing the tool
- Summary that will change your life



Summary (life changing)

- Nanofabrication is valuable. \$\$\$
- One enabling nanofabrication tool is plasma etch.
- Plasmas are necessary for some portion of the nanofabrication market.
- Understanding, and integrating core engineering principles is powerful.

