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X-Ray Photoelectron Spectroscopy (XPS) 

 X-ray Photoelectron Spectroscopy (XPS), also known 
as Electron Spectroscopy for Chemical Analysis 
(ESCA), is used to determine quantitative atomic 
composition and chemistry. 

 A sample is irradiated with monochromatic x-rays, 
resulting in the emission of photoelectrons whose 
energies are characteristic of the elements within the 
sampling volume. 

 An XPS spectra is created by plotting the number of 
electrons verses their binding energy. 
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Historical Notes on XPS  
 Kai Siegbahn (b.1918): inventor of 

modern-day XPS was working at 
Uppsala University in Sweden in the 
1950s and 1960s. 

 Siegbahn was a physicist, and chose 
to call his method electron 
spectroscopy for chemical analysis 
(ESCA), because he understood the 
importance of the chemical information 
that XPS or ESCA can provide. 

 Siegbahn shared the Nobel Prize for 
Physics (1981) for his work.  

 

1918-2007 
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X-ray Photoelectron Spectroscopy 

 Based on Einstein’s photoelectric effect. 
 Many materials emit electrons when light shines upon them  

 Core electrons with kinetic energy Ek are ejected by 
incident X-rays. 

EK = hν – Eb – φsp 
 
EK = kinetic energy 
Eb = binding energy 
h = Planck’s constant 
ν = frequency of X-rays 
φsp = spectrometer work function 

EVac hν e- Eb 
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X-Ray Photoelectron Spectroscopy (XPS) 

 An x-ray beam usually comprised 
of k-alpha x-rays is focused on 
the sample. 

 The absorption of incident x-rays 
results in the ejection of 
electrons.  

 The energy of the ejected 
electrons is measured by the 
detector. 

x-ray 
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X-Ray Photoelectron Spectroscopy 

Released into the public domain by its author, Bvcrist at the English Wikipedia project. 
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Energy of the ejected electrons 

Released into the public domain by its author, Bvcrist at the English Wikipedia project. 
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X-Ray Photoelectron Spectroscopy (XPS) 

 Each atom has a unique XPS spectra. 

 XPS can determine elemental composition, 
stoichiometry, electrical/chemical states and examine 
surface contamination.  

 XPS is an elemental analysis technique that is unique in 
providing chemical state information of the detected 
elements, such as distinguishing between sulfate and 
sulfide forms of the element sulfur. 
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Inelastic mean free path (λM) 
 When an electron with kinetic 

energy E moves through a 
solid matrix M, it has a 
probability of traveling a 
certain distance before losing 
all or part of its energy due to 
an inelastic collision.  

 The average distance traveled 
before such a collision is 
known as the inelastic mean 
free path λM(E).  
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Inelastic mean free path (λM) 

 Since the energy ranges used 
in XPS analysis are typically 
50–1200 eV, the values of λ are 
very small, corresponding to 
only a few monolayers.  

 Photoelectrons must originate 
from atomic layers very close to 
surface to be detected.  

 Therefore, the XPS technique is 
very surface-specific.   
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XPS surface analysis  
What is a surface? 
 Surfaces  
(3 atomic layers) using XPS and 
angle resolved XPS (ARXPS) 
 
 Ultra-thin films 
(3-30 atomic layers) using XPS 
and angle resolved XPS 

 
 Thin films 
(3-600 atomic layers) using XPS 
in combination with sputter 
etching for profiling 

Surface: ~1 nm 

Ultra-thin films: 1-10 nm  

Thin film: 10 nm to 2 µm  

Bulk 
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XPS is used to measure: 
 elemental composition of the surface (top 1–10 nm usually) 
 empirical formula of pure materials 
 elements that contaminate a surface 
 chemical or electronic state of each element in the surface 
 uniformity of elemental composition across the top surface (or line 

profiling or mapping) 
 uniformity of elemental composition as a function of ion beam 

etching (or depth profiling) 

X-Ray Photoelectron Spectroscopy (XPS) 

X-ray 

Sample 

Photoelectron 

Electron energy analyzer 

EK = hν – Eb – φsp 
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XPS instrumentation 

 UHV System  

 X-ray source  

 Electron analyzer  

 Ion gun  
Magnetic Shield 

Sample 

Detector 
X-ray  
source 

Lenses for 
energy 
adjustment 

Lenses for 
analysis  
area definition 

Analyzer control & 
computer system 

Hemispherical energy analyzer 
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XPS instrumentation 

Ultra-High Vacuum System  
 Allows longer photoelectron path length  
 Ultra-high vacuum keeps surfaces clean, 

preventing the contaminations to produce 
X-ray signal 

 Pressure < 10-8 Torr 
 Vacuum pumps 
Roughing Pump  
Turbo Pump  
Ion Pump 

Pressure (Torr) 

Medium Vacuum 

High Vacuum 

Ultra-High Vacuum 

Low Vacuum 
102 

10-1 

10-4 

10-8 

10-11 
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XPS instrumentation 
   X-ray source  
 Dual Anode X-ray source 
Mg Kα radiation: hν = 1253.6 eV 
Al Kα radiation: hν = 1486.6 eV 

Monochromated using quartz crystal  

Filament 

Al Window 

Filament 

Shield Silver  
substrate 

Anode 
15 kV 

X-ray 

Al Mg 

Quartz crystal  

Al anode 

Electron 
beam 

Electron  
source 

Sample 

X-ray 
beam 

X-ray Source XR 50 
http://www.specs.de/cms/front_content.php?idcat=118 
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XPS instrumentation 

  Electron analyzer  
 Lens system to collect photoelectrons  
 Analyzer to filter electron energies  
 Detector to count electrons  

Magnetic Shield 

Sample 

Detector 
X-ray  
source 

Lenses for 
energy 
adjustment 

Lenses for 
analysis  
area definition 

Analyzer control & 
computer system 

Hemispherical energy analyzer 
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XPS instrumentation 

Ion gun  
 Sample cleaning  
 Depth profiling 
 Ar+ is the most widely used ion 

Ar+ gun  X-ray  
source 

Electron analyzer 

e- 
e- 

e- 
e- 

Sample 
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XPS spectrum 
 Photoelectron peaks reflect discrete binding energies 

of the electrons present in the solid 
MoO3 film excited by Al Kα (1486.6 eV) 



www.nano4me.org © 2018 The Pennsylvania State University XPS 22 

XPS Peak: spin orbit coupling 
 XPS peak is originated from the photoelectrons in the core-levels 

and valence band. 
 In the quantum mechanics, the nomenclature for a core level is nlj: 

 n : principle quantum number 
 l : orbit angular momentum quantum number 
 j : total angular momentum quantum number; j = l + s 
 s : spin angular momentum quantum number, s=±1/2 
 

If l=0, single XPS peak 
if l>0, a doublet peak-- spin orbit (l-s) coupling 

0 s 

1 p 

2 d 

3 f 2d3/2 

n l = 2 

j = l - s 
j = l + s 
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XPS Peak: spin orbit coupling 
 Since s can be ±1/2, each level with l>0 is split into two sublevels 

with an energy difference known as the spin-orbit splitting.  

 The degeneracy of each of these levels is 2j+1  
 

Orbital  l J Degeneracy Electron level 

1s 0 1/2 1 1s 

2s 0 1/2 1 2s 

2p 1 1/2  2 2p1/2  

2p 1 3/2  4 2p3/2 

3d 2 3/2 4 3d3/2 

3d 2 5/2 6 3d5/2 

4f 3 5/2 6 4f5/2 

4f 3 7/2 8 4f7/2 

Δ = 3.13 eV 

Mo 3d5/2 

Mo 3d3/2 

MoO3 film  
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XPS Peak intensities 

Binding Energy (eV) 

1s 2p1/2 2p3/2 3d3/2 3d5/2 4f5/2 4f7/2 

s orbital p orbital d orbital f orbital 

1 1:2 2:3 3:4 
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XPS energy levels 
 The photoelectron’s binding energy will be based on 

the element’s final-state configuration. 

1s 

2s 

2p 
Valence band Valence band 

Conduction band Conduction band 

Initial State Final State 
Free 
electron 

Fermi 
level 
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Energy lines 

 Photon energies, 
in eV, of principle 
K- and L- shell 
emission lines.  

X-ray data booklet, Lawrence Berkeley 
National Laboratory, 3rd edition, 2009  



www.nano4me.org © 2018 The Pennsylvania State University XPS 27 

XPS energy: chemical shifts 
 When an atom makes a bond with another atom, the 

valence electron density changes resulting in an 
adjustment of the electrostatic potential affecting the 
core electrons.   

 Change in the binding energies of the core electrons 
cause shifts in the corresponding photoelectron peaks 

EK = hν – Eb – φsp 

 Atom loses valence charge, BE increases  
 (Mo -> MoO2) 

 Atom gains valence charge, BE decreases  
 (MoO3 -> MoO2) 
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XPS energy: chemical shifts 
 Atoms of higher positive oxidation state show a higher 

binding energy 
 Extra coulombic interaction between the photo-

emitted electron and the ion core 
Element  level Compound Binding Energy 

(eV) 
Mo 3d5/2 Mo2C 227.8 

Mo 3d5/2 Mo 228.0 

Mo 3d5/2 MoO2 229.4 

Mo 3d5/2 MoS2 229.4 

Mo 3d5/2 MoCl3 230.0 

Mo 3d5/2 MoCl4 231.0 

Mo 3d5/2 MoCl5 232.2 

Mo 3d5/2 MoO3 232.6 
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Quantitative analysis 
 Atomic concentration of elements can be calculated:  

 
 

 We define sensitivity factors:  
 σij : Photoionization cross-section of peak j of element i 
 λ(KE): Inelastic mean free path length 

 
 Therefore, ni is dependent on the peak area (Iij) and sensitivity factor 

 
In

te
ns

ity
 

Kinetic energy 

Peak area  
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Quantitative analysis 

C.D. Wagner, et al, Surf. Interface Anal. 3, (1981) 211. 

 Atomic sensitivity factors for X-ray sources at 54.7o 
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Depth profiling 
 To remove surface contaminations or find elemental 

distribution throughout the film thickness  
 Ar+ energy: 1-3 KV 
 Sample rotation 

 

Ar+ gun  X-ray  
source 

Electron analyzer 

Sample 

XPS spectrum Ar+ sputtering Start 
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Depth profiling 
 Cu(In,Ga)Se2 film deposited on ITO 
 

Elemental distribution Ga 3d analysis 

 Formation of Ga 
oxide at the interface 

 Ga accumulation at the interface 
 Cu diffusion into the ITO layer 
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Summary 
Vacuum Range 

 Requires ultra high vacuum 
 Sample compatibility with UHV environment may be an 

issue with biological samples 
Sensitivity 

 Measures the elemental composition of the top 10 nm 
 Can detect all elements except H and He 
 Detection limits typically ~ 0.1 atomic percent 
 Typically the smallest analytical area ~10 µm  

Material analysis 
 Can analyze metals, inorganic, polymers 
 Sample compatibility with UHV environment 
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Online sources 

• PNNL EMSL: www.emsl.gov  

• AVS Science & Technology Society: www.avs.org  

• AVS Surface Science Spectra: www.avs.org/literature.sss.aspx  

• Evans Analytical Group: www.cea.com  

• NIST X-ray Photoelectron Spectroscopy Database: www.srdata.nist.gov/sps/  

• NIST Electron Inelastic-Mean-Free-Path Database: www.nist.gov/srd/nist71.htm  

• QUASES-IMFP-TPP2M QUASES-Tougaard Inc.: www.quases.com  

• Surfaces & Interfaces Section, National Physical Lab. www.npl.co.uk/npl/cmmt/sis  

• XPS MultiQuant www.chemres.hu/aki/XMQpages/XMQhome.htm  

• ASTM International: www.astm.org 
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