#### **ENRG 54 - Introduction to Lighting Systems and Controls**

**COURSE DESCRIPTION:** Fundamentals of lighting systems and controls for energy auditors. Concepts of lighting, terminology, measurement tools, identifying energy efficiency opportunities, codes, standards.

#### 30 Hours (20 lecture, 10 lab)

#### **LEARNING OUTCOMES:**

- Summarize terminology, physics and principles of lighting
- Identify and compare various types of lighting systems, including field identification and interpretation of nameplate data
- Measure illuminance and lighting intensity
- Describe the theory and operations of various lighting control systems
- Evaluate energy use by various types of lighting systems and identify opportunities for energy efficiency measures
- Calculate energy savings of energy efficiency measures and estimate their financial impact
- Apply relevant local, state and national codes, standards and regulations relevant to lighting system recommendations

#### 

|     | COURSE TOPICS:                            |
|-----|-------------------------------------------|
| I.  | Introduction to fundamentals of lighting  |
|     | A. Lighting terminology                   |
|     | 1. Luminous flux                          |
|     | 2. Illuminance                            |
|     | 3. Reflectance                            |
|     | 4. Power                                  |
|     | 5. Efficacy                               |
|     | 6. Lighting power density                 |
|     | 7. Lamp life                              |
|     | 8. Lumen depreciation                     |
|     | 9. Correlated color temperature           |
|     | 10. Color rendering index (CRI)           |
|     | 11. Ballast factor                        |
|     | B. Physics and principles of lighting     |
|     | 1. Spectral power distribution            |
|     | 2. Inverse square law                     |
|     | C. Units of measurement                   |
|     | 1. Lumen                                  |
|     | 2. Foot-candle                            |
|     | 3. Power (wattage)                        |
|     | 4. kWh                                    |
|     | D. Vision and colors                      |
|     | E. Ambient, directional and task lighting |
|     | F. Over-and under-illuminance             |
| II. | Lighting systems                          |
|     | A. Components                             |
|     | 1. Luminaire                              |
|     | 2. Lamp                                   |
|     | 3. Ballast                                |
|     | 4. Reflector                              |
|     | 5 Diffuser lens or louver                 |

- B. Types of lamps
  - 1. Incandescent
  - 2. Halogen
  - 3. Fluorescent
  - 4. High intensity discharge
    - a. Metal halide
    - b. Mercury vapor
    - c. High pressure sodium
    - d. Low pressure sodium
  - 5. Induction lamps
  - 6. Light emitting diodes (LED)
  - 7. Neon
- C. Ballasts
  - 1. Electro-magnetic (magnetic) ballast
  - 2. Electronic ballast
  - 3. Ballast factor
- D. Lamp comparison matrix
- E. Types of lighting luminaires and intensities
- F. Energy efficiency measures (EEMs)
  - 1. Lamp replacement
  - 2. Ballast replacement
- III. Lighting controls
  - A. Basic concepts of effectiveness of lighting control
  - B. Types and appropriate applications of lighting controls
    - 1. Manual switches
    - 2. Schedule controls or sweeps (building automation systems)
    - 3. Timers and time clocks
    - 4. Infrared and ultrasonic occupancy sensors
    - 5. Manual dimmers
    - 6. Daylight controls or photo sensors
    - 7. Bi-level switching
  - C. Lighting control equations
  - D. Energy efficiency measures (EEMs)
- IV. Additional EEMs
  - A. De-lamping
  - B. Scotopic lighting
  - C. Task and ambient light levels
  - D. Circadian rhythms
  - Lighting measurements
    - A. Tools

V.

- 1. Flicker checker
- 2. Illuminance meter
- 3. Luminance meter
- 4. Lighting measurement devices
- 5. Spectrophotometer
- 6. Goniophotometer
- 7. Circuit tracer
- B. Data loggers and applications
  - 1. Occupancy
  - 2. Hours of use
- VI. Lighting calculations
  - A. Equation and method of calculating lumens (zonal cavity formula)
  - B. Equation and method of calculating energy savings

- C. Method of calculating skylight energy savings
- VII. Lighting standards, codes and regulations
  - A. Underwriters' Laboratory (UL)
  - B. Uniform Building Code (UBC)
  - C. Americans with Disabilities Act (ADA)
  - D. Title 24 applications

VIII. O&M (operations and maintenance) measures to assure optimal performance

#### **TYPES OF ASSIGNMENTS:**

#### I. In-class

- A. Class discussions and demonstrations
- B. Perform energy usage and energy savings calculations from assigned problem sets
- C. Hands-on tool and meter use and interpretations

D. Field trips such as visiting the Pacific Energy Center lighting lab, walk-throughs of various campus facilities to identify lighting types

- E. Small group projects such as oral presentation of findings from field trip site visits
- II. Out-of-class
  - A. Readings from texts, websites and instructor handouts
  - B. Calculations of energy use and energy savings from assigned problem sets
  - C. Research and prepare brief (1-2 page) report comparing strengths and weaknesses of different lamp types
  - D. Brief written paper (2-3 pages) on topics such as appropriate applications for various lighting types

#### **TEXTBOOKS & RESOURCES:**

- Instructor handouts on such topics as comparison of qualities of various lamp types
- Lighting wattage tables

### **BEST Center Curricula, Resources & Recordings**

Academic Programs Georgia Piedmont Technical College - Building Automation Systems Milwaukee Area Technical College - Sustainable Facilities Operations Laney College - Commercial HVAC Systems City College San Francisco - Commercial Building Energy Analysis & Audits

Professional Development Materials, Presentations & Videos National Institutes Building Automation Systems Instructor Workshops Webinars (e.g., BEST Talks)

Faculty Profile Videos Reports & Case Studies Marketing Resources

© 2013-2025 by BEST Center: NSF National Center for Building Technician Education is licensed under Creative Commons Attribution-Non Commercial (CC BY-NC) 4.0 International.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/

## © • SCC BY-NC 4.0

# **Attribution-NonCommercial 4.0**



