ENRG 61 - Measurement Tools and Verification of Savings Calculations

COURSE DESCRIPTION: Measurement and verification (M&V) is a quality assurance process for energy efficiency measures that have been implemented. Course covers how M&V relates to audit process, accepted standards, M&V planning, measurement boundaries, data collection tools and methods, savings calculations.

18 Lecture Hours

LEARNING OUTCOMES:

Upon completion of this course a student will be able to:

- Describe the role of measurement and verification in the commercial building audit process
- Distinguish between different measurement boundaries, and describe the appropriate selection criteria for each
- Identify sources of data and appropriate measurement instruments
- Assess and apply different energy savings analysis methods
- Calculate actual energy savings based on data

COURSE TOPICS:

- I. Role of measurement & verification (M&V) in energy efficiency (EE), renewable energy, or demand response (DR) process
 - A. Normal project process
 - 1. Audit
 - 2. Implementation
 - 3. Verification
 - B. Importance and uses of M&V
 - 1. Quality assurance for EE measures
 - 2. Basis of payments, rebates and incentives from utilities or energy service companies (ESCOs)
 - 3. Data for calculating true financial impact of implemented EE measures
 - 4. Data point for possible future EE measures
- II. Concepts, guidelines and standards
 - A. Concepts
 - 1. Savings cannot be measured, only estimated

2. Audit savings estimates may be based on published tables, prior studies, or calculated with various levels of rigor and measured data

- 3. Audit savings estimates needed for cost/benefit analysis of measures implemented
- B. Guidelines and Standards
 - 1. Standard M&V procedures are documented in international, and national protocols and guidelines

a. International Performance Measurement & Verification Protocol (IPMVP) by Efficiency Valuation Organization (EVO)

- b. ASHRAE Guideline 14
- c. Various practical guidelines (list, describe, and cite sources)
- C. Savings verification
 - 1. Quality assurance methods
 - 2. IPMVP-based M&V relies on direct energy measurements before and after EE measure implementation
 - a. Fundamental savings verification concept
 - b. Concept of adjustments
- D. Measurement boundaries determine type & extent of data collected
- Savings Calculation Fundamentals
- A. Energy savings = adjusted baseline energy post implementation energy +/- non-routine adjustments
- B. Baseline energy use

III.

- C. Adjustments to energy use
 - 1. Routine adjustments

- a. Caused by naturally occurring influencing factors
- b. Whole building level
 - 1.) Ambient air temperature
 - 2.) Relative humidity
 - 3.) Building operations schedule
 - 4.) Occupancy
- c. System level
 - 1.) Lighting (on or off)
 - 2.) HVAC
 - i. Very complex
 - ii. Many variables
 - iii. Heat load is main influencing factor
- 2. Non-routine adjustments
 - a. Unanticipated events that affect energy use
 - b. Tenants moving in or out
 - c. Adding new function to building, such as a data center
 - d. Equipment failure
- IV. Measurement boundary
 - A. Building level
 - 1. Easiest to obtain, hardest to get detailed data
 - 2. Whole building meters for gas or electricity
 - 3. Weather data
 - 4. Building operations schedule
 - B. System level
 - 1. Requires ability to measure energy use by system
 - 2. Separate meters
 - 3. System control data monitoring
 - C. Component level
 - 1. Requires ability to measure energy use by component
 - 2. Component control data monitoring
- V. Savings calculation methods
 - A. Load and schedule combinations
 - 1. Lighting
 - 2. HVAC
 - 3. Other systems
 - B. Sampling of multiple small measures
 - C. Regressions
 - 1. Whole building level
 - 2. System level
 - D. Simulations
 - 1. Whole building level
 - 2. Retrofit isolation
 - E. Available software and tools
- VI. Selection of measurement boundary
 - A. IPMVP options for data sources for different measurement boundaries
 - 1. Retrofit isolation key parameter measurement (system level)
 - 2. Retrofit isolation all parameter measurement (system level)
 - 3. Whole building (empirical energy models)
 - 4. Calibrated simulations (computer simulations)
 - B. Determining factors in measurement boundary selection
 - 1. Number and diversity of energy efficiency measures
 - a. Single system or component = retrofit isolation
 - b. Multiple systems = whole building-+

- 2. Magnitude of savings: need large magnitude to select whole building
- 3. Availability of data
- VII. Sources of Data and Measurement Instruments
 - A. Whole building
 - 1. Electric
 - a. Monthly bills
 - b. Time-of use meters (large facilities)
 - c. Smart meters
 - d. Advanced metering or Energy Information Systems (EIS) owned by customer
 - 2. Natural Gas
 - a. Monthly bills
 - b. Smart meters
 - c. Advanced metering or $\ensuremath{\mathsf{EIS}}$
 - B. Building subsystems
 - 1. Building automation system (controls)
 - 2. Energy management and Information Systems
 - 3. Typical data available
 - a. Submeters
 - b. Status/feedback signals
 - 1.) Equipment on/off
 - 2.) Variable speed signal
 - c. Sensor data:
 - 1.) Ambient temperature (local)
 - 2.) Indoor temperature
 - 3.) Supply and Return temperatures (water or air)
 - 4.) Etc.
 - d. Weather data
 - 1.) Websites NOAA, weather underground
 - 2.) TMY data
 - C. Measurement devices
- VIII. Developing the M&V Plan
 - A. Defining EEM intent
 - B. Select IPMVP Option and define Measurement Boundary
 - C. Define the baseline period and conditions
 - D. Savings reporting periods
 - E. Basis for adjustments
 - F. Data collection
 - 1. Data loggers
 - 2. Spot measurement instruments
 - 3. Calibration issues

TYPES OF ASSIGNMENTS:

I. In-class

- A. Participation in class discussions
- B. Small group projects such as identifying factors required for M&V savings analysis, or developing an appropriate M&V approach for various sample EE, renewable or DR measures
- C. Perform calculations from data sets such as M&V savings analyses from sample data sets
- II. Out-of-class
 - A. Readings as assigned from M&V resources, instructor handouts
 - B. Perform calculations of different M&V savings methods using provided data (monthly bills, interval data, end-use data)
 - C. Develop a written M&V Plan for an assigned project

TEXTBOOKS & RESOURCES:

- www.evo-world.org, resource for the IPMVP
- www.ashrae.org, resource for ASHRAE Guideline 14 (approx \$80 cannot require)
- www.cacx.org, practical guidelines for M&V in commissioning projects
- www.conduitnw.org, practical guidelines for M&V methods: end-use approach, energy modeling approach, regression guidance, sampling guidance

BEST Center Curricula, Resources & Recordings

Academic Programs Georgia Piedmont Technical College - Building Automation Systems Milwaukee Area Technical College - Sustainable Facilities Operations Laney College - Commercial HVAC Systems City College San Francisco - Commercial Building Energy Analysis & Audits

Professional Development Materials, Presentations & Videos National Institutes Building Automation Systems Instructor Workshops Webinars (e.g., BEST Talks)

Faculty Profile Videos Reports & Case Studies Marketing Resources

© 2013-2025 by BEST Center: NSF National Center for Building Technician Education is licensed under Creative Commons Attribution-Non Commercial (CC BY-NC) 4.0 International.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc/4.0/

© • SCC BY-NC 4.0

Attribution-NonCommercial 4.0

