

Problem Solving for Technicians

Presented by Southwest Center for Microsystems Education -SCME-November 2012

Our Presenters

Mary Jane (MJ) Willis Instructional Designer, SCME and retired Chair for the Manufacturing Technology Program – Central New Mexico Community College

rosystems Education

- What can SCME do for you?
- What's a systematic approach to problem solving?
- How do you ask a good question? Who do you ask?
- What type of problems do technicians solve?
- What's the difference between problem solving and troubleshooting?

Educational Materials

To date SCME offers

- 150 Shareable Content Objects (SCOs)
 - Informational Units / lessons
 - Supporting activities
 - Supporting assessments
- 37 Learning Modules in the areas of
 - Safety
 - Microsystems Introduction
 - Microsystems Applications
 - Bio MEMS
 - Microsystems Fabrication
- 11 Instructional Kits
- All are available @ scme-nm.org

Professional Development

- 4 to 5-day workshops
- 2-day workshops
- 1-day workshop
- Conferences and conference workshops
- Create hubs at other colleges to teach our workshops
- Webinars

What is Problem Solving?

- What is problem solving and why are we doing it?
- To get everyone involved on the same page and used to the same methods.
- Problem Solving should become part of your daily tools.

Six Steps to Problem Solving

My Grass is Dying!

Scenario

- You work for a lawn care company.
- A customer walks in and tell you that her grass has dead spots in it and they weren't there before.

This is what my yard looked like a few months ago.

Step 1: Recognize that a Problem Exists

- A problem may not really be a problem.
- Make sure that you truly do have a problem and that everyone agrees.
- Define the problem.
- Write problem statement.

Problem Statements

- There are spots of dead grass in my yard that weren't there before.
- Product yield has dropped from 78% to 58% over the past month.
- Rework in photolithography has increased in the past month.

Photolithography Process Steps

Step 2: Analyze the Problem

Ask questions -

- Why do you see this as a problem?
- What does it look like?
- When did it start?
- Who maintains it?
- Where do you see the problem occurring?
- **How** many times has it happened?
- Did anything change recently and if so, what?
- What is **NOT** happening?

Gather Data -

- Collect data
- Look at records, maintenance schedules
- Talk to the people closely related to the problem

5 W's and an H

Change?

What is NOT?

My Grass is Dying?

There are spots of dead grass in my yard that weren't there before.

What's a Good Question

- WHY do you see these dead spots as a problem?
- WHAT do the spots look like?
- WHEN do you start noticing these spots?
- WHERE in your yard do you have spots? WHERE do you NOT have spots?
- WHO else in your neighborhood hasspots of dead grass?HOW do you water your grass?HOW do you fertilize your grass?

What's a NOT Good Question

Do you fertilize and water your lawn?

What do your neighbors think about your lawn?

What type of lawnmower do you have?

Problem Solving Flowchart

Step 3: Identify the Possible Causes

Brainstorm

- A fast method for generating ideas
- Everyone participates

Rules for Brainstorming

- No analysis or evaluation (that comes later)
- Any and all ideas are welcome (there is no wrong idea)
- The more ideas, the better
- "piggybacking" is encouraged

Step 3: Identify Possible Causes

Record results of Brainstorming session.

- Make a list
- Create a Cause and Effect Diagram (also called Fishbone or Ishikawa)

Brainstorming for Causes of Spots

What are some causes of the dead spots in your customer's yard?

Flowchart

Step 4: Evaluate the Possible Causes

- Prioritize the possible causes
 - From the easiest and quickest to eliminate
 - High priority to low priority
 - To the most difficult
- Ask more questions.
 - How could this have caused the problem?
 - Would it account for everything that IS and IS NOT happening?
 - Would this have caused the full extent of the problem?
 - Does this correlate to the discovery of the problem?
 - Would this explain everything that is happening?
- Ask the customer more questions.

Step 4: Evaluate the Possible Causes

• Let's evaluate the possible causes for the dead grass in my yard.

Flowchart

Step 5: Develop an Action Plan

A good action plan includes a series of steps

- **Steps** or actions required
- Sequence in which these should be carried out
- **Responsibilities** of the various people involved
- **Provisions** for follow-up and control
- Methods for communicating the plan and the results

Step 5: Action Plan for Dying Grass

What would our action plan be for the dying grass based on the information and possible causes that we have gathered and developed?

Example of an Action Plan

Step 6: Verification

- Once the cause of the problem has been found and action has been taken to correct, you must verify that the problem has been solved.
- Record, record, record.

PS Flowchart

Types of Problems

Well-defined or well-structured problem

- Simple and well-defined
- Solution can normally be quickly identified and fixed
- Ill-defined or ill-structured problem
- Can't be solved quickly and easily
- Does not have an obvious cause
- Numerous possible causes or one cause that is difficult to identify

Well-Structured Problems

We've lost vacuum to the chuck in the photolithography

spin module.

The last batch of wafers from the evaporator showed a huge increase in particle counts whereas particle counts have been low for weeks.

Even though the program parameters on the oxidation furnace haven't changed, the last two batches of wafers came out with an unacceptable low oxide thickness.

Ill-Structured Problems

- The yield on the number of good die per wafer has been steadily decreasing over the past two weeks.
- The gas mileage on your car has been steadily decreasing over the past year.
- Particle counts on the wafers from coat/develop have slowly been increasing over the past 4 weeks.

Problem Solving vs. Troubleshooting

Troubleshooting

- Normally applied to well-structured problems
- If the cause is obvious, then fix it
- Troubleshooting requires critical thinking
- Troubleshooting skills come with knowledge and experience
- Developed over time

Problem Solving

- Applied to ill-structured problems
- Engaged when the quick fix didn't work
- Problem solving requires critical thinking
- Problem solving requires organization and teamwork

Tools for Problem Solving

- Scatter diagrams
- Cause & Effect Diagrams
- Checklists
- Pareto charts
- Histograms
- Control charts Statistical Process Control (SPC)
- Design of Experiments (DOE)

People	# of occurrences
Retraining	14 people
Follow procedures	4 (failure to follow)
Absenteeism	18 hours
New vendors	1
Data Integrity	3 (entry errors)
Promotions	4
New Hires	1

Scatter Plots

SCATTER DIAGRAMS – A pictorial representation of the problem.

Tools for Problem Solving

Cause & Effect Diagram

Item Checklists

People	# of occurrences
Retraining	14 people
Follow procedures	4 (failure to follow)
Absenteeism	18 hours
New vendors	1
Data Integrity	3 (entry errors)
Promotions	4
New Hires	1
Pareto Charts

Process Flowcharts

Problem Solving Flowcharts

Tools for Problem Solving

Histograms – Graphical representation of a frequency distribution

Tools for Problem Solving

Control Charts – Show what process parameters are doing on a daily basis.

Problem #2

You are a technician in the photolithography aisle of a local MEMS fabrication facility. After randomly testing several wafers from the last processing batch and plotting the data on a control chart, you identify an outof-control situation with resist thickness.

Write a Problem Statement

There was a sudden increase in photo resist thickness on wafers from the photolithography aisle. The increase exceeds the upper control limit of photoresist thickness.

Photo Review

Resist Thickness vs. Spin Speed for Different Resist Viscosities

Step 2

Step 2: Analyze the Problem

You are a technician in the photolithography aisle of a local MEMS fabrication facility. After randomly testing several wafers from the last processing batch and plotting the data on a control chart, you identify an outof-control situation with resist thickness.

Step 2: Analyze the Problem

You are a technician in the photolithography aisle of a local MEMS fabrication facility. After randomly testing several wafers from the last processing batch and plotting the data on a control chart, you identify an outof-control situation with resist thickness.

Step 3: Possible Causes

Brainstorm for possible causes

Step 4: Evaluate possible causes

Step 5: Action Plan

Step 5: Develop an Action Plan

Step 6: Verification

Step 6: Verification

- Is the problem fixed?
- How will you prevent the problem from occurring again?
- Record the data, the process, and the solution (Documentation)
- Was this a well-structured problem or an ill-structured problem?

Step 1: Does a problem exists?

Step 2: Analyze the Problem

Step 3: Possible Causes

Step 4: Evaluate Possible Causes

Step 5: Action Plan

Step 6: Verification

Load (

Thank You For Joining Us

Barb Lopez botero@unm.edu

Mary Jane (MJ) Willis mjwillis@comcast.net

How Can We Serve You Better?

Please take 1 minute to provide your feedback and suggestions

https://www.research.net/s/F6J3FWJ

Webinar Resources

To access this webinar recording, slides, and handout, please visit

www.scme-nm.org

SCME Upcoming Webinars

January 24, 2013: Statistical Process Control for Technicians

February 28, 2013: Design of Experiments for Technicians

TBA: Problem-solving Tools Applied to Microfabrication

All Webinars on Thursday @ 1 PM ET

It was Fun!

Thank you for attending this SCME Webinar

Problem Solving for Technicians