Technology Enabled Formative Assessment

Back to Primers

Authors: Mingyu Feng, Janice Gobert, Patti Schank
Printer-Friendly PDF | Google Doc for Comment | Questions? Contact CIRCL

Overview

Formative assessment occurs when teachers check student understanding and guide decision making to improve learning. Formative assessment is a powerful way to improve student achievement, particularly when teachers use data to adjust instruction (Black & Wiliam, 1998a, 1998b; Boston, 2002; Roediger & Karpicke, 2006; Speece, Molloy, & Case, 2003). Formative assessment can provide critical information about whether students understand the targeted concepts and skills, and if not, what problematic or partial understandings are present instead. Teachers can use the evidence about student understanding to guide students from partial or incorrect understandings toward targeted learning goals.

Black and Wiliam’s (1998a) review of 250 studies found effect sizes for formative assessment to be larger than those seen for any other instructional intervention tested. Formative assessment has also been shown to have beneficial effects for student motivation: feedback to students about progress and performance can increase student persistence, sense of self-efficacy, and self-regulated learning (Black and Wiliam, 1998; Brookhart, 1997, 2001; Stiggins, 2001b). Still, teachers often feel they don’t have time to assess students due to tight schedules for covering new content (Dodge, 2009).

Technology enabled formative assessment has the potential to bring formative assessment and the associated benefits to more teachers, students, and classrooms in a timely, usable fashion (Bennett, 1999; Pellegrino, Chudowsky, & Glaser, 2001). Technology can help educators effectively implement formative assessment by enabling more immediate feedback, displaying feedback in readily usable ways, and by providing new possibilities for assessing student understanding of scientific phenomena in dynamic, interactive ways (Gobert et al., 2013). Technology-based systems, which log students’ actions in a non-intrusive way , can react on the basis of formative data to scaffold student learning in real time–even on open-ended, higher-order thinking skill tasks (Pellegrino, et al., 2001). (See, for example, the CIRCL Spotlight on dynamic formative assessment to enhance learning in virtual biology labs.) When carefully designed to align with the curriculum, standards, and large-scale tests, technology-supported classroom assessment further has the potential to generate data that are usable not only in guiding classroom instruction, but also in informing accountability programs (e.g., Wilson & Draney, 2004) and in improving program implementation.

Interest in technology-enabled assessment in K-12 Education is accelerating (Olson, 2004). Important drivers of growth include the ongoing shift of assessment from paper to digial media, educational policies that promote formative assessment, and the desire of actors at all levels of the educational system to improve their performance. Today, many online testing companies (such as Renaissance Learning, www.renlearn.com) automatically grade students and provide reports. Classroom response systems (e.g., clickers) have been widely used to pose multiple-choice questions and collect responses from students instantly; students’ responses can be aggregated visually and shared immediately with the class for discussion (Bransford, Brophy, & Williams, 2000; Roschelle, Penuel, & Abrahamson, 2004; Zurita, Nussbaum, & Salinas, 2005).

Commercially-available formative assessments, however, tend to focus on the most conventional aspects of school topics. Available assessments are more likely to measure student understanding of facts and procedures than concepts and strategies. They are more likely to be informed by classical test theory than by learning science methods, such as evidence-centered design (ECD; Mislevy, Steinberg, & Almond, 2003; Mislevy & Haertel, 2006). Formative assessments which are aligned to the ambitious elements of today’s standards are rare. Thus, important opportunities for advancing the field await research-based initiatives that integrate learning science-based views of content and learning with technology and with modern assessment frameworks such as evidence-centered design.

Indeed, NSF-funded dynamic assessment systems such as ASSISTments, Science Learning by Inquiry, Diagnoser.com, and Simbio are going beyond commonplace formative assessments. For example, they combine formative assessments with real-time scaffolding of student learning. When students respond to problems in these systems, they receive hints and tutoring to the extent they need them, based on a student model that is developed and constantly updated by the system. Research-based systems are exploring the use of games, visualizations, and simulations in formative assessment, as well as more complex tasks and scenarios. These systems also provide teachers with detailed diagnostic reports to help them adjust their instruction accordingly.

Next »