Collaborative Research: Revolutionizing Electric Vehicle Education
The United States is facing an unprecedented need for a new generation of technological talent to respond to international competition for an automotive workforce with diverse, up-to-date skill sets driven by electric vehicles (EV), autonomous vehicles (AV), and the cybersecurity associated with software-driven vehicles. The internal combustion engine is being phased out and replaced by electricity, setting the stage for an increased demand for autonomous and EV technologies. This changing technological climate and the resultant concurrent global competition necessitate transformation at every level of automotive development from EV designers to EV technicians. The demand for skilled EV manufacturing and service industry technicians is substantial and is predicted to increase at a rate where demand outpaces quantity. Workers aging out of the workforce, the lack of advanced STEM skills for those currently in the workforce, and increased economic expansion are contributing factors to this deficit. Collaboration among educators and employers must occur to advance the understanding of workforce challenges and opportunities. To meet the need, a faculty-driven consortium of two-year Institutions of Higher Education (IHEs), other ATE projects and centers, and industry will collaborate to address the next generation cross-disciplinary workforce needs of the Electric Vehicle (EV) manufacturing and service industry through an innovative hybrid virtual and augmented reality (VR/AR) education approach.
The consortium project partners include: Volvo, Daimler, BMW, Proterra, Bosch, Duke Energy, Michelin, the Upstate SC Alliance, the South Carolina Manufacturing Extension Partnership, the South Carolina Technical College System, the National Center for Autonomous Technologies, the National Cybersecurity Training and Education Center, the Regional Center for Nuclear Education, and the Northwest Engineering and Vehicle Technology Exchange. The project goals will address current and future EV manufacturing and service industry needs for both two-year college students and incumbent workers. Goal 1: Identify current and future education and workforce needs required by the migration of the transportation industry from traditional fuels to battery-powered electric vehicles. Goal 2: Create, deploy, and assess an innovative, creative, and informed cross- disciplinary EV manufacturing and service industry technician education hybrid curricula incorporating classroom, virtual, and experiential learning. Strategies will be implemented to support participation and persistence in EV manufacturing and service technician education for students including those who are rural, veterans, and those historically underserved in STEM career pathways. Goal 3: Develop and/or strengthen partnerships with consortium members, ATE projects and centers, and industry to leverage and share expertise and best practices for maximum impact and sustainability within and across fields and institutions. Goal 4: Provide professional development addressing the new EV curricula to ensure widespread use, dissemination, and faculty leadership development.
Comments